51 research outputs found

    Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343)

    Get PDF
    Bering Sea sediments represent exceptional archives, offering the potential to study past climates and biogeochemistry at a high resolution. However, abundant hydrocarbons of microbial origin, especially along the eastern Bering Sea continental margin, can hinder the applicability of palaeoceanographic proxies based on calcareous foraminifera, due to the formation of authigenic carbonates. Nonetheless, authigenic carbonates may also bear unique opportunities to reconstruct changes in the sedimentary redox environment. Here we use a suite of visual and geochemical evidence from single-specimens of the shallow infaunal benthic foraminiferal species Elphidium batialis Saidova (1961), recovered from International Ocean Discovery Program (IODP) Site U1343 in the eastern Bering Sea, to investigate the influence of authigenic carbonates on the foraminiferal trace metal composition. Our results demonstrate that foraminiferal calcite tests act as a nucleation template for secondary carbonate precipitation, altering their geochemistry where organoclastic sulphate reduction and anaerobic oxidation of methane cause the formation of low- and high-Mg calcite, respectively. The authigenic carbonates can occur as encrusting on the outside and/or inside of foraminiferal tests, in the form of recrystallization of the test wall, or as banding along natural laminations within the foraminiferal test walls. In addition to Mg, authigenic carbonates are enriched in U/Ca, Mn/Ca, Fe/Ca, and Sr/Ca, depending on the redox environment that they were formed in. Our results demonstrate that site-specific U/Ca thresholds are a promising tool to distinguish between diagenetically altered and pristine foraminiferal samples, important for palaeoceanographic reconstructions utilising the primary foraminiferal geochemistry. Consistent with previous studies, U/Mn ratios of foraminifera at IODP Site U1343 increase according to their degree of diagenetic alteration, suggesting a potential response of authigenic U/Mn to the microbial activity in turn linked to the sedimentary redox environment

    Cenozoic seawater Sr/Ca evolution

    Get PDF
    Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth’s history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotem- perature record from the same samples, the gastropod record suggests that Sr/Casw was slightly higher in the Eocene (11.4‘3mmol/mol)thantoday(11.4 ` 3 mmol/mol) than today (8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gas- tropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic pre- cipitate (calcite veins) Sr/Casw records. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Casw records. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide

    Strontium to calcium ratios in the marine gastropod Conus ermineus: Growth rate effects and temperature calibration

    Get PDF
    Here we investigate the potential of Sr/Ca ratios in the marine gastropod Conus ermineus for reconstructing seawater temperatures. We present annually resolved records of Sr/Ca and δ 18O for four shells collected alive from the Flower Garden Banks National Marine Sanctuary in the Gulf of Mexico. Our results show that variations in Sr/Ca and δ 18O covary with the in situ seasonal temperature cycle. Sr/Ca and temperature are positively correlated, in contrast with the inverse relationship found in inorganically precipitated aragonite. The seasonal Sr/Ca variability is superimposed on a long-term trend of increasing Sr/Ca with age. Both the seasonal and long-term ontogenetic changes in Sr/Ca are associated with variations in growth rate, defined here as the shell linear extension rate (LER); the seasonal variability in LER is superimposed on a long-term decrease with ontogeny. Thus the covariance of Sr/Ca ratios with temperature and LER suggests that Sr incorporation is likely driven by temperature influence on growth rate, rather than by thermodynamic effects. Unlike the seasonal variability, the ontogenetic effect is characterized by inverse covariation between Sr/Ca and LER, suggesting that Sr/Ca variability is not controlled by growth rate alone, but probably by two different biomineralization mechanisms, one related to temperature and the other related to age. We use the seasonal Sr/Ca signal of four shells to construct a temperature calibration. To minimize the ontogenetic effects, we separate the records into juvenile and adult growth stages and calculate the Sr/Ca-temperature (T) relationships: Juvenile: Sr/Ca (mmol mol−1) = 0.042 (±0.008) * T (°C) + 0.24 (±0.21) (R2 = 0.66) Adult: Sr/Ca(mmol mol−1) = 0.072 (±0.014) * T (°C) − 0.05 (±0.34) (R2 = 0.68) Applying the calibration to a single specimen provides mean annual temperature estimates within ±1°C of the in situ temperature record but resolves the seasonal variability only within ±3.5°C. The large error in the seasonal estimates reflects the high variability among specimens. To reduce the uncertainty on seasonal temperatures, we propose combining records from multiple shells to generate an average temperature record. The potential of this approach needs, however, to be validated in other locations

    Turbid reefs experience lower coral bleaching effects in NE Borneo (Sabah, Malaysia)

    Get PDF
    The impacts of climate change are becoming more evident in recent years. Future projections suggest that heat stress events will likely be more frequent and severe over the next century, threatening the high diversity of the Coral Triangle. Shallow turbid reefs may help dampen some of these effects as several studies have shown their inherent resilience to heat stress events. Therefore, our main goal was to test this hypothesis by assessing the response of corals to the heat stress event of 2020. We conducted bleaching surveys in two contrasting habitats in Darvel Bay, Sabah: the turbid reef of Sakar, and the clear-water reef of Blue Lagoon. Relatively high coral cover (40-43%) was observed on both reefs in 2019. Underwater data loggers were used to monitor temperature and light. Coral colonies were scored from video transects of 100m at 5m and 10m depth in both localities, with an additional transect at 15m depth in Blue Lagoon. A total of 1,326 coral colonies were evaluated for bleaching presence and bleaching severity based on the six-point scoring method. Bleaching severity varied significantly between both reefs. Low bleaching impacts were observed in the high turbid reef, with an average of 9.6% of colonies having bleached. Meanwhile, the clear-water of Blue Lagoon had an average of 37.1% of coral colonies affected by bleaching. Bleaching severity also varied significantly among depth, where corals in deeper depths bleached less in Blue Lagoon. Foliose coral forms were most affected in Blue Lagoon, while massive coral forms suffered the most in Sakar reef. Bleaching responses were also significantly different among coral genera. While Ctenactis and Herpolitha were consistently resistant in both reefs, Leptoseris, Fungia and Goniopora were most affected in the 5m of Blue Lagoon. Meanwhile, Pachyseris was notably more affected in Sakar reef at 10m than in Blue Lagoon. Overall, bleaching indices within these two reefs are lower than most that were assessed around the globe during heat stress events in 2020. These outcomes support the hypothesis of turbid reefs hosting resilient coral communities in the face of climate change

    A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera

    Get PDF
    The work was supported by NERC grants NE/I006176/1 (Gavin L. Foster and Caroline H. Lear), NE/H006273/1 (Gavin L. Foster), NE/I006168/1 and NE/K014137/1 and a Royal Society Research Merit Award (Paul A. Wilson), a NERC Independent Research Fellowship NE/K00901X/1 (Mathis P. Hain) and a NERC studentship (Rosanna Greenop).The boron isotope composition (δ11B) of foraminiferal calcite reflects the pH and the boron isotope composition of the seawater the foraminifer grew in. For pH reconstructions, the δ11B of seawater must therefore be known, but information on this parameter is limited. Here we reconstruct Neogene seawater δ11B based on the δ11B difference between paired measurements of planktic and benthic foraminifera and an estimate of the coeval water column pH gradient from their δ13C values. Carbon cycle model simulations underscore that the ΔpH-Δδ13C relationship is relatively insensitive to ocean and carbon cycle changes, validating our approach. Our reconstructions suggest that δ11Bsw was ∼37.5‰ during the early and middle Miocene (roughly 23-12 Ma) and rapidly increased during the late Miocene (between 12 and 5 Ma) towards the modern value of 39.61 ‰. Strikingly, this pattern is similar to the evolution of the seawater isotope composition of Mg, Li and Ca, suggesting a common forcing mechanism. Based on the observed direction of change, we hypothesize that an increase in secondary mineral formation during continental weathering affected the isotope composition of riverine input to the ocean since 14 Ma.Publisher PDFPeer reviewe

    Growth responses of mixotrophic giant clams on nearshore turbid coral reefs

    Get PDF
    Increasing evidence suggests that nearshore turbid coral reefs may mitigate bleaching of reef building calcifiers and play a critical role in the future of marine biodiversity in coastal areas. However, biomineralization processes on turbid reefs are relatively understudied compared to clear water counterparts and most published work focuses on corals. Here, we investigate how the mixotrophic giant clam Tridacna squamosa, a bivalve with ecological, cultural and economic significance, grows across a mosaic of less turbid to turbid reefs in the Coral Triangle. We construct growth chronologies from live and dead collected shells by measuring daily growth increments with petrography and scanning electron microscopy (SEM) to gain insight into growth rate on daily, seasonal and annual scales. We find annual growth is not significantly different across a turbidity gradient when scaled to ontogeny, while seasonal growth highly varies. Kd(490) (a measurement positively correlated with turbidity) and chlorophyll-a are likely important factors driving seasonal growth on a turbid reef near a river, compared to sea surface temperature (SST), cloud cover and rainfall on a less turbid reef. On a daily scale, we investigate increment microstructure and spectral characteristics of chronologies, finding a relationship between tidal range and daily increments. Overall, our results indicate that light-enhanced calcification is likely most important in the less turbid reef, compared to heterotrophic feeding in the turbid reef. The trophic plasticity of T. squamosa may allow for its sustained growth in marginal conditions, supporting evidence that these habitats serve as important conservation hotspots for diverse reef building taxa

    Microstructure and crystallographic texture data in modern giant clam shells (Tridacna squamosa and Hippopus hippopus)

    Get PDF
    This article provides novel data on the microstructure and crystallographic texture of modern giant clam shells (Tridacna squamosa and Hippopus hippopus) from the Coral Triangle region of northeast Borneo. Giant clams have two aragonitic shell layers—the inner and outer shell layer. This dataset focuses on the inner shell layer as this is well preserved and not affected by diagenetic alteration. To prepare samples for analysis, shells were cut longitudinally at the axis of maximum growth and mounted onto thin sections. Data collection involved scanning electron microscopy (SEM) to determine microstructure and SEM based electron backscatter diffraction (EBSD) for quantitative measurement of crystallographic orientation and texture. Post-acquisition reanalysis of saved EBSD patterns to optimize data quality included changing the number of reflectors and band detection mode. We provide EBSD data as band contrast images and colour-coded orientation maps (inverse pole figure maps). Crystallographic co-orientation strength obtained with multiple of uniform density (MUD) values are derived from density distributed pole figures of indexed EBSD points. Raw EBSD data files are also given to ensure repeatability of the steps provided in this article and to allow extraction of further crystallographic properties for future researchers. Overall, this dataset provides 1. a better understanding of shell growth and biomineralization in giant clams and 2. important steps for optimizing data collection with EBSD analyses in biogenic carbonates

    Coral geochemical response to uplift in the aftermath of the 2005 Nias–Simeulue earthquake

    Get PDF
    On 28 March 2005, the Indonesian islands of Nias and Simeulue experienced a powerful Mw 8.6 earthquake and coseismic uplift and subsidence. In areas of coastal uplift (up to ~ 2.8 m), fringing reef coral communities were killed by exposure, while deeper corals that survived were subjected to habitats with altered runoff, sediment and nutrient regimes. Here we present time-series (2000–2009) of Mn/Ca, Y/Ca and Ba/Ca variability in massive Porites corals from Nias to assess the environmental impact of a wide range of vertical displacement (+ 2.5 m to − 0.4 m). High-resolution LA-ICP-MS measurements show that skeletal Mn/Ca increased at uplifted sites, regardless of reef type, indicating a post-earthquake increase in suspended sediment delivery. Transient and/or long-term increases in skeletal Y/Ca at all uplift sites support the idea of increased sediment delivery. Coral Mn/Ca and Ba/Ca in lagoonal environments highlight the additional influences of reef bathymetry, wind-driven sediment resuspension, and phytoplankton blooms on coral geochemistry. Together, the results show that the Nias reefs adapted to fundamentally altered hydrographic conditions. We show how centuries of repeated subsidence and uplift during great-earthquake cycles along the Sunda megathrust may have shaped the modern-day predominance of massive scleractinian corals on the West Sumatran reefs

    Late quaternary sea-ice and sedimentary redox conditions in the eastern Bering Sea – Implications for ventilation of the mid-depth North Pacific and an Atlantic-Pacific seesaw mechanism

    Get PDF
    On glacial-interglacial and millennial timescales, sea ice is an important player in the circulation and primary productivity of high latitude oceans, affecting regional and global biogeochemical cycling. In the modern North Pacific, brine rejection during sea-ice freezing in the Sea of Okhotsk drives the formation of North Pacific Intermediate Water (NPIW) that ventilates the North Pacific Ocean at 300 m to 1000 m water depth. Glacial intervals of the late Quaternary, however, experienced a deepening of glacial NPIW to at least 2000 m, with the strongest ventilation observed during cold stadial conditions of the last deglaciation. However, the origin of the shifts in NPIW ventilation is poorly understood. Numerical simulations suggest an atmospheric teleconnection between the North Atlantic and the North Pacific, in response to a slowdown or shutdown of the Atlantic meridional overturning circulation. This leads to a build-up of salinity in the North Pacific surface ocean, triggering deep ventilation. Alternatively, increased sea-ice formation in the North Pacific and its marginal seas may have caused strengthened overturning in response to enhanced brine rejection. Here we use a multi-proxy approach to explore sea-ice dynamics, sedimentary redox chemistry, and benthic ecology at Integrated Ocean Drilling Program Site U1343 in the eastern Bering Sea across the last 40 ka. Our results suggest that brine rejection from enhanced sea-ice formation during early Heinrich Stadial 1 locally weakened the halocline, aiding in the initiation of deep overturning. Additionally, deglacial sea-ice retreat likely contributed to increased primary productivity and expansion of mid-depth hypoxia at Site U1343 during interstadials, confirming a vital role of sea ice in the deglacial North Pacific carbon cycle
    • …
    corecore