93 research outputs found

    Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface

    Full text link
    Many-body interactions in transition-metal oxides give rise to a wide range of functional properties, such as high-temperature superconductivity, colossal magnetoresistance, or multiferroicity. The seminal recent discovery of a two-dimensional electron gas (2DEG) at the interface of the insulating oxides LaAlO3 and SrTiO3 represents an important milestone towards exploiting such properties in all-oxide devices. This conducting interface shows a number of appealing properties, including a high electron mobility, superconductivity, and large magnetoresistance and can be patterned on the few-nanometer length scale. However, the microscopic origin of the interface 2DEG is poorly understood. Here, we show that a similar 2DEG, with an electron density as large as 8x10^13 cm^-2, can be formed at the bare SrTiO3 surface. Furthermore, we find that the 2DEG density can be controlled through exposure of the surface to intense ultraviolet (UV) light. Subsequent angle-resolved photoemission spectroscopy (ARPES) measurements reveal an unusual coexistence of a light quasiparticle mass and signatures of strong many-body interactions.Comment: 14 pages, 4 figures, supplementary information (see other files

    Ultrafast charge transfer processes accompanying KLL Auger decay in aqueous KCl solution

    Full text link
    X-ray photoelectron spectroscopy (XPS) and KLL Auger spectra of aqueous KCl solution were measured for the K+^+ and Cl^- edges. While the XPS spectra of potassium and chloride have similar structures, both exhibiting only weak satellite structures near the main line, the Auger spectra of these isoelectronic ions differ dramatically. A very strong satellite peak was found in the K+^+ KLL Auger spectrum at the low kinetic energy side of the 1^1D state. Using equivalent core models and ab initio calculations this spectral structure was assigned to electron transfer processes from solvent water molecules to the solvated K+^+ cation. Contrary to the potassium case, no extra peak was found in the KLL Auger spectrum of solvated Cl^- indicating on a strong dependence of the underlying processes on ionic charge. The observed charge transfer processes are suggested to play an important role in charge redistribution following single and multiple core-hole creation in atomic and molecular systems placed into an environment

    Bacterial β-Glucosidase Reveals the Structural and Functional Basis of Genetic Defects in Human Glucocerebrosidase 2 (GBA2)

    Get PDF
    Human glucosylcerebrosidase 2 (GBA2) of the CAZy family GH116 is responsible for the breakdown of glycosphingolipids on the cytoplasmic face of the endoplasmic reticulum and Golgi apparatus. Genetic defects in GBA2 result in spastic paraplegia and cerebellar ataxia, while cross-talk between GBA2 and GBA1 glucosylceramidases may affect Gaucher disease. Here, we report the first three-dimensional structure for any GH116 enzyme, Thermoanaerobacterium xylanolyticum TxGH116 β-glucosidase, alone and in complex with diverse ligands. These structures allow identification of the glucoside binding and active site residues, which are shown to be conserved with GBA2. Mutagenic analysis of TxGH116 and structural modeling of GBA2 provide a detailed structural and functional rationale for pathogenic missense mutations of GBA2

    Chitin Research Revisited

    Get PDF
    Two centuries after the discovery of chitin, it is widely accepted that this biopolymer is an important biomaterial in many aspects. Numerous studies on chitin have focused on its biomedical applications. In this review, various aspects of chitin research including sources, structure, biosynthesis, chitinolytic enzyme, chitin binding protein, genetic engineering approach to produce chitin, chitin and evolution, and a wide range of applications in bio- and nanotechnology will be dealt with
    corecore