98 research outputs found
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
Agroforesterie et services écosystémiques en zone tropicale
Respectueux de l’environnement et garantissant une sécurité alimentaire soutenue par la diversification des productions et des revenus qu’ils procurent, les systèmes agroforestiers apparaissent comme un modèle prometteur d’agriculture durable dans les pays du Sud les plus vulnérables aux changements globaux. Cependant, ces systèmes agroforestiers ne peuvent être optimisés qu’à condition de mieux comprendre et de mieux maîtriser les facteurs de leurs productions. L’ouvrage présente un ensemble de connaissances récentes sur les mécanismes biophysiques et socio-économiques qui sous-tendent le fonctionnement et la dynamique des systèmes agroforestiers. Il concerne, d’une part les systèmes agroforestiers à base de cultures pérennes, telles que cacaoyers et caféiers, de régions tropicales humides en Amérique du Sud, en Afrique de l’Est et du Centre, d’autre part les parcs arborés et arbustifs à base de cultures vivrières, principalement de céréales, de la région semi-aride subsaharienne d’Afrique de l’Ouest. Il synthétise les dernières avancées acquises grâce à plusieurs projets associant le Cirad, l’IRD et leurs partenaires du Sud qui ont été conduits entre 2012 et 2016 dans ces régions. L’ensemble de ces projets s’articulent autour des dynamiques des systèmes agroforestiers et des compromis entre les services de production et les autres services socio-écosystémiques que ces systèmes fournissent
Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103
Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
Um problema de corte com padrões compartimentados
Neste artigo apresentaremos a aplicação do Problema da Mochila Compartimentada (PMC) no Problema de Corte de Bobinas de Aço (PCBA), que é um problema de corte em duas etapas com restrições especiais de agrupamento dos itens. O PMC consiste em construir compartimentos de capacidades desconhecidas em uma mochila de capacidade conhecida, tendo em vista que os itens de interesse estão agrupados em subconjuntos, de modo que, itens de um agrupamento não podem ser combinados com itens de outro. Para entender melhor o PMC admita que a mochila de um alpinista deve ser composta por um número ideal de compartimentos com itens de quatro categorias (remédios, alimentos, ferramentas, roupas), porém, itens de categorias distintas não podem ser combinados para formar um mesmo compartimento, além do mais, são desconhecidas as capacidades ideais de cada compartimento da mochila.<br>In this paper we will present the application of the Compartmented Knapsack Problem (CKP) in the Cut Problem of Steel Rolls (CPSR), that it is a problem of cut in two stages with restrictions special of grouping of items. The CKP consists of constructing compartments of unknown capacities in a knapsack of known capacity, in view of that items of interest is grouped in subgroups, in mode that, items of a grouping cannot be matched with items of another one. To understand the CKP more good it admits that the knapsack of a alpinist must be composite for an ideal number of compartments with items of four categories (remedies, foods, tools, clothes), however, items of distinct categories cannot be matched to form one same compartment, in addition, is unknown the ideal capacities of each compartment of the knapsack
Abordagens para otimização integrada dos problemas de geração e seqüenciamento de padrões de corte: caso unidimensional
O problema de geração de padrões de corte (ou problema de corte de estoque) consiste em determinar o conjunto de padrões em que unidades demandadas (itens) são cortadas de unidades maiores (objetos) tal que, por exemplo, o custo ou a perda de material é minimizado. O problema de seqüenciamento de padrões de corte consiste em determinar a seqüência em que os padrões são cortados tal que, por exemplo, o número máximo de pilhas abertas (pilhas de itens com demanda apenas parcialmente produzida, que ainda serão cortados de um ou mais padrões seguintes nessa seqüência) é minimizado. Em geral, uma boa solução para o problema de geração de padrões não corresponde a uma boa solução para o problema de seqüenciamento de padrões e vice-versa. Esses dois problemas são freqüentemente resolvidos, tanto na prática como na literatura, de forma independente e sucessiva. Este trabalho apresenta três abordagens heurísticas para resolver de forma integrada os problemas de geração e seqüenciamento de padrões, considerando o trade-off entre os objetivos envolvidos. Embora essas abordagens possam ser aplicadas para problemas de corte e empacotamento de qualquer dimensão, neste trabalho elas são analisadas e comparadas apenas para o caso de corte unidimensional.<br>The cutting pattern generating problem (or cutting stock problem) consists in determining the set of patterns in which ordered units (items) are cut from larger units (objects) so that, for example, the cost or waste of material is minimized. The cutting pattern sequencing problem consists in determining the sequence in which the patterns are cut so that, for example, the maximum number of open stacks (stacks of items with demand only partially produced and that will be cut in the next cutting patterns of the sequence) is minimized. In general a good solution for the pattern generating problem does not correspond to a good solution for the pattern sequencing problem and vice-versa. These problems are frequently solved, both in practice and in the literature, in an independent and successive way. This work presents three heuristic approaches to deal with the integrated pattern generating and sequencing problem, considering the trade-off between the objectives involved. Although the approaches can be applied to cutting and packing problems of any dimension, in this work they are analyzed and compared only for the one-dimensional cutting case
Pattern recognition by pentraxins
Pentraxins are a family of evolutionarily conserved pattern-recognition proteins that are made up of five identical subunits. Based on the primary structure of the subunit, the pentraxins are divided into two groups: short pentraxins and long pentraxins. C-reactive protein (CRP) and serum amyloid P-component (SAP) are the two short pentraxins. The prototype protein of the long pentraxin group is pentraxin 3 (PTX3). CRP and SAP are produced primarily in the liver while PTX3 is produced in a variery oftissues during inflammation. The main functions of short pentraxins are to recognize a variery of pathogenic agents and then to either eliminate them or neutralize their harmful effects by utilizing the complement pathways and macrophages in the host. CRP binds to modified low-densiry lipoproteins, bacterial polysaccharides, apoptotic cells, and nuclear materials. By virtue of these recognition functions, CRP participates in the resolution ofcardiovascular, infectious, and autoimmune diseases. SAP recognizes carbohydrates, nuclear substances, and amyloid fibrils and thus participates in the resolution of infectious diseases, autoimmuniry, and amyloidosis. PTX3 interacts with several ligands, including growth factors, extracellular matrix component and selected pathogens, playing a role in complement activation and facilitating pathogen recognition by phagoeytes. In addition, data in gene-targeted mice show that PTX3 is essential in female fertiliry, participating in the assembly of the cumulus oophorus extracellular matrix. PTX3 is therefore a nonredundant component ofthe humoral arm of innate immuniry as well as a tuner of inflammation. Thus, in conjunction with the other components ofinnate immuniry, the pentraxins use their pattern-recognition properry for the benefit of the host
- …