48 research outputs found

    Spectroscopic and Theoretical Study of CuI Binding to His111 in the Human Prion Protein Fragment 106-115

    Get PDF
    The ability of the cellular prion protein (PrPC) to bind copper in vivo points to a physiological role for PrPC in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrPC. Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting CuI and CuII binding properties. We have evaluated CuI coordination to the PrP(106-115) fragment of the human PrP protein, using NMR and X-ray absorption spectroscopies and electronic structure calculations. We find that Met109 and Met112 play an important role in anchoring this metal ion. CuI coordination to His111 is pH-dependent: at pH >8, 2N1O1S species are formed with one Met ligand; in the range of pH 5-8, both methionine (Met) residues bind to CuI, forming a 1N1O2S species, where N is from His111 and O is from a backbone carbonyl or a water molecule; at pH <5, only the two Met residues remain coordinated. Thus, even upon drastic changes in the chemical environment, such as those occurring during endocytosis of PrPC (decreased pH and a reducing potential), the two Met residues in the MKHM motif enable PrPC to maintain the bound CuI ions, consistent with a copper transport function for this protein. We also find that the physiologically relevant CuI-1N1O2S species activates dioxygen via an inner-sphere mechanism, likely involving the formation of a copper(II) superoxide complex. In this process, the Met residues are partially oxidized to sulfoxide; this ability to scavenge superoxide may play a role in the proposed antioxidant properties of PrPC. This study provides further insight into the CuI coordination properties of His111 in human PrPC and the molecular mechanism of oxygen activation by this site.Fil: Arcos López, Trinidad. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Qayyum, Munzarin. University of Stanford; Estados UnidosFil: Rivillas Acevedo, Lina. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Miotto, Marco César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina. Max Planck Laboratory for Structural Biology; ArgentinaFil: Grande Aztatzi, Rafael. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Fernandez, Claudio Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina. Max Planck Laboratory for Structural Biology; ArgentinaFil: Hedman, Britt. University of Stanford; Estados UnidosFil: Hodgson, Keith O.. University of Stanford; Estados UnidosFil: Vela, Alberto. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Solomon, Edward I.. University of Stanford; Estados UnidosFil: Quintanar, Liliana. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; Méxic

    Safety and immunogenicity of pneumococcal conjugate vaccines in a high-risk population : A randomized controlled trial of 10-valent and 13-valent pneumococcal conjugate vaccine in Papua New Guinean infants

    Get PDF
    Background. There are little data on the immunogenicity of PCV10 and PCV13 in the same high-risk population. Methods. PCV10 and PCV13 were studied head-to-head in a randomized controlled trial in Papua New Guinea in which 262 infants received 3 doses of PCV10 or PCV13 at 1, 2, and 3 months of age. Serotype-specific immunoglobulin G (IgG) concentrations, and pneumococcal and nontypeable Haemophilus influenzae (NTHi) carriage were assessed prevaccination and at 4 and 9 months of age. Infants were followed up for safety until 9 months of age. Results. One month after the third dose of PCV10 or PCV13, 80% of infants had IgG concentrations ≥0.35µg/mL for vaccine serotypes, and 6 months postvaccination IgG concentrations ≥0.35 µg/mL were maintained for 8/10 shared PCV serotypes in > 75% of children vaccinated with either PCV10 or PCV13. Children carried a total of 65 different pneumococcal serotypes (plus nonserotypeable). At 4 months of age, 92% (95% confidence interval [CI] 85–96) of children vaccinated with PCV10 and 81% (95% CI 72–88) vaccinated with PCV13 were pneumococcal carriers (P = .023), whereas no differences were seen at 9 months of age, or for NTHi carriage. Both vaccines were well tolerated and not associated with serious adverse events. Conclusions. Infant vaccination with 3 doses of PCV10 or PCV13 is safe and immunogenic in a highly endemic setting; however, to significantly reduce pneumococcal disease in these settings, PCVs with broader serotype coverage and potency to reduce pneumococcal carriage are needed. Clinical Trials Registration. NCT01619462

    A shared MHC supertype motif emerges by convergent evolution in macaques and mice, but is totally absent in human MHC molecules

    Get PDF
    The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the Dd mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These “G2” alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the “G2” alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans

    Human Apolipoprotein A-I-Derived Amyloid: Its Association with Atherosclerosis

    Get PDF
    Amyloidoses constitute a group of diseases in which soluble proteins aggregate and deposit extracellularly in tissues. Nonhereditary apolipoprotein A-I (apoA-I) amyloid is characterized by deposits of nonvariant protein in atherosclerotic arteries. Despite being common, little is known about the pathogenesis and significance of apoA-I deposition. In this work we investigated by fluorescence and biochemical approaches the impact of a cellular microenvironment associated with chronic inflammation on the folding and pro-amyloidogenic processing of apoA-I. Results showed that mildly acidic pH promotes misfolding, aggregation, and increased binding of apoA-I to extracellular matrix elements, thus favoring protein deposition as amyloid like-complexes. In addition, activated neutrophils and oxidative/proteolytic cleavage of the protein give rise to pro amyloidogenic products. We conclude that, even though apoA-I is not inherently amyloidogenic, it may produce non hereditary amyloidosis as a consequence of the pro-inflammatory microenvironment associated to atherogenesis

    Rationale and methods of a randomized controlled trial of immunogenicity, safety and impact on carriage of pneumococcal conjugate and polysaccharide vaccines in infants in Papua New Guinea

    Get PDF
    Abstract Background Children in third-world settings including Papua New Guinea (PNG) experience early onset of carriage with a broad range of pneumococcal serotypes, resulting in a high incidence of severe pneumococcal disease and deaths in the first 2 years of life. Vaccination trials in high endemicity settings are needed to provide evidence and guidance on optimal strategies to protect children in these settings against pneumococcal infections. Methods This report describes the rationale, objectives, methods, study population, follow-up and specimen collection for a vaccination trial conducted in an endemic and logistically challenging setting in PNG. The trial aimed to determine whether currently available pneumococcal conjugate vaccines (PCV) are suitable for use under PNG’s accelerated immunization schedule, and that a schedule including pneumococcal polysaccharide vaccine (PPV) in later infancy is safe and immunogenic in this high-risk population. Results This open randomized-controlled trial was conducted between November 2011 and March 2016, enrolling 262 children aged 1 month between November 2011 and April 2014. The participants were randomly allocated (1:1) to receive 10-valent PCV (10vPCV) or 13-valent PCV (13vPCV) in a 1-2-3-month schedule, with further randomization to receive PPV or no PPV at age 9 months, followed by a 1/5th PPV challenge at age 23 months. A total of 1229 blood samples were collected to measure humoral and cellular immune responses and 1238 nasopharyngeal swabs to assess upper respiratory tract colonization and carriage load. Serious adverse events were monitored throughout the study. Of the 262 children enrolled, 87% received 3 doses of PCV, 79% were randomized to receive PPV or no PPV at age 9 months, and 67% completed the study at 24 months of age with appropriate immunization and challenge. Conclusion Laboratory testing of the many samples collected during this trial will determine the impact of the different vaccine schedules and formulations on nasopharyngeal carriage, antibody production and function, and immune memory. The final data will inform policy on pneumococcal vaccine schedules in countries with children at high risk of pneumococcal disease by providing direct comparison of an accelerated schedule of 10vPCV and 13vPCV and the potential advantages of PPV following PCV immunization. Trial registration ClinicalTrials.gov CTN NCT01619462 , retrospectively registered on May 28, 201

    Spectroscopic and Theoretical Study of Cu<sup>I</sup> Binding to His111 in the Human Prion Protein Fragment 106–115

    No full text
    The ability of the cellular prion protein (PrP<sup>C</sup>) to bind copper in vivo points to a physiological role for PrP<sup>C</sup> in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrP<sup>C</sup>. Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting Cu<sup>I</sup> and Cu<sup>II</sup> binding properties. We have evaluated Cu<sup>I</sup> coordination to the PrP(106–115) fragment of the human PrP protein, using NMR and X-ray absorption spectroscopies and electronic structure calculations. We find that Met109 and Met112 play an important role in anchoring this metal ion. Cu<sup>I</sup> coordination to His111 is pH-dependent: at pH >8, 2N1O1S species are formed with one Met ligand; in the range of pH 5–8, both methionine (Met) residues bind to Cu<sup>I</sup>, forming a 1N1O2S species, where N is from His111 and O is from a backbone carbonyl or a water molecule; at pH <5, only the two Met residues remain coordinated. Thus, even upon drastic changes in the chemical environment, such as those occurring during endocytosis of PrP<sup>C</sup> (decreased pH and a reducing potential), the two Met residues in the MKHM motif enable PrP<sup>C</sup> to maintain the bound Cu<sup>I</sup> ions, consistent with a copper transport function for this protein. We also find that the physiologically relevant Cu<sup>I</sup>-1N1O2S species activates dioxygen via an inner-sphere mechanism, likely involving the formation of a copper­(II) superoxide complex. In this process, the Met residues are partially oxidized to sulfoxide; this ability to scavenge superoxide may play a role in the proposed antioxidant properties of PrP<sup>C</sup>. This study provides further insight into the Cu<sup>I</sup> coordination properties of His111 in human PrP<sup>C</sup> and the molecular mechanism of oxygen activation by this site
    corecore