280 research outputs found

    Un caso clínico de de carcinoma tiroideo en un gato

    Get PDF
    Se describe un caso de carcinoma tiroideo en una gata mestiza de 6 años de edad, siendo este tipo de tumores tiroideos de baja incidenica en la clínica felina. ELanimal presentaba un historialde disfagia de aproximadamente 3 semanas de evolución debido a la presencia de una masa dura en la porción ventral del cuello. El estudio radiológico de la región cervical puso de manifiesto la existencia de una masa de densidad tejido blando, y en el examen ecográfico se pudo apreciar una estructura hipoecogénica con áreas centrales anecógenas y focos de mineralización. El examen citológico de una muestra de la masa obtenida mediante aspiración con aguja fina era compatible con una inflamación o con un tumor tipo epitelial. El tratamiento consistió en la exéresis de la masa. La evolución tra la intervención fue favorable, pero aproximadamente un año después el animal había adelgazado, estaba anoréxico y con una ligera dificultad respiratoria. Se realizaron radiografía torácicas y en ellas se pudo observar la presencia de múltiples nódulos, lo cual era compatible con una metástasis pulmonar.

    Moir\'e patterns on STM images of graphite from surface and subsurface rotated layer

    Full text link
    We have observed with STM moir\'e patterns corresponding to the rotation of one graphene layer on HOPG surface. The moir\'e patterns were characterized by rotation angle and extension in the plane. Additionally, by identifying border domains and defects we can discriminate between moir\'e patterns due to rotation on the surface or subsurface layer. For a better understanding of moir\'e patterns formation we have studied by first principles an array of three graphene layers where the top or the middle layer appears rotated around the stacking axis. We compare the experimental and theoretical results and we show the strong influence of rotations both in surface and subsurface layers for moir\'e patterns formation in corresponding STM images.Comment: 5 pages, 6 figure

    Genetic relationships within and among Iberian fescues (Festuca L.) based on PCR-amplified markers

    Full text link
    The genus Festuca comprises approximately 450 species and is widely distributed around the world. The Iberian Penninsula, with more than 100 taxa colonizing very diverse habitats, is one of its main centers of diversification. This study was conducted to assess molecular genetic variation and genetic relatedness among 91 populations of 31 taxa of Iberian fescues, based on several molecular markers (random amplified polymorphic DNA, amplified fragment length polymorphisms, and trnL sequences). The analyses showed the paraphyletic origin of the broad-leaved (subgenus Festuca, sections Scariosae and Subbulbosae, and subgenus Schedonorus) and the fine-leaved fescues (subgenus Festuca, sections Aulaxyper, Eskia, and Festuca). Schedonorus showed a weak relationship with Lolium rigidum and appeared to be the most recent of the broad-leaved clade. Section Eskia was the most ancient and Festuca the most recent of the fine-leaved clade. Festuca and Aulaxyper were the most related sections, in concordance with their taxonomic affinities. All taxa grouped into their sections, except F. ampla and F. capillifolia (section Festuca), which appeared to be more closely related to Aulaxyper and to a new independent section, respectively. Most populations clustered at the species level, but some subspecies and varieties mixed their populations. This study demonstrated the value in combining different molecular markers to uncover hidden genetic relationships between populations of Festuca

    The HI/OH/Recombination line survey of the inner Milky Way (THOR): data release 2 and Hi overview

    Get PDF
    Context. The Galactic plane has been observed extensively by a large number of Galactic plane surveys from infrared to radio wavelengths at an angular resolution below 40". However, a 21 cm line and continuum survey with comparable spatial resolution is still missing. Aims. The first half of THOR data (l = 14.0 37.9, and l = 47.1 51.2, |b| < 1.25) has been published in our data release 1 paper (Beuther et al. 2016). With this data release 2 paper, we publish all the remaining spectral line data and Stokes I continuum data with high angular resolution (1000–4000) including a new H i dataset for the whole THOR survey region (l = 14.0 67.4 and |b| < 1.25). As we have published the results of OH lines and continuum emission elsewhere, we concentrate on the H i analysis in this paper. Methods. With the Karl G. Jansky Very Large Array (VLA) in C-configuration, we observed a large portion of the first Galactic quadrant achieving an angular resolution of < 40. At L Band, the WIDAR correlator at the VLA was set to cover the 21 cm H i line, four OH transitions, a series of Hn↵ radio recombination lines (RRLs; n = 151 to 186), and eight 128 MHz wide continuum spectral windows (SPWs) simultaneously. Results. We publish all OH and RRL data from the C-configuration observations, and a new H i dataset combining VLA C+D+GBT (VLA D-configuration and GBT data are from the VLA Galactic Plane Survey, Stil et al. 2006) for the whole survey. The H i emission shows clear filamentary substructures at negative velocities with low velocity crowding. The emission at positive velocities is more smeared-out likely due to higher spatial and velocity crowding of structures at the positive velocities. Comparing to the spiral arm model of the Milky Way, the atomic gas follows the Sagittarius and Perseus Arm well but with significant material in the inter-arm regions. With the C-configuration-only H i+continuum data, we produced a H i optical depth map of the THOR areal coverage from 228 absorption spectra with the nearest-neighbor method. With this ⌧ map, we corrected the H i emission for optical depth and the derived column density is 38% higher than the column density with optically thin assumption. The total H i mass with optical depth correction in the survey region is 4.7⇥108 M, 31% more than the mass derived assuming the emission is optically thin. If we apply this 31% correction to the whole Milky Way, the total atomic gas mass would be 9.4–10.5⇥109 M. Comparing the H i with existing CO data, we find a significant increase in the atomic-to-molecular gas ration from the spiral arms to the inter-arm regions. Conclusions. The high sensitivity and resolution THOR H i dataset provides an important new window on the physical and kinematic properties of gas in the inner Galaxy. Although the optical depth we derive is a lower limit, our study shows that the optical depth correction is significant for H i column density and mass estimation. Together with the OH, RRL and continuum emission from the THOR survey, these new H i data provide the basis for high angular-resolution studies of the interstellar medium (ISM) in different phases

    PTEN mediates Notch-dependent stalk cell arrest in angiogenesis

    Get PDF
    Coordinated activity of VEGF and Notch signals guides the endothelial cell (EC) specification into tip and stalk cells during angiogenesis. Notch activation in stalk cells leads to proliferation arrest via an unknown mechanism. By using gain- and loss-of-function gene-targeting approaches, here we show that PTEN is crucial for blocking stalk cell proliferation downstream of Notch, and this is critical for mouse vessel development. Endothelial deletion of PTEN results in vascular hyperplasia due to a failure to mediate Notch-induced proliferation arrest. Conversely, overexpression of PTEN reduces vascular density and abrogates the increase in EC proliferation induced by Notch blockade. PTEN is a lipid/protein phosphatase that also has nuclear phosphatase-independent functions. We show that both the catalytic and non-catalytic APC/C-Fzr1/Cdh1-mediated activities of PTEN are required for stalk cells' proliferative arrest. These findings define a Notch-PTEN signalling axis as an orchestrator of vessel density and implicate the PTEN-APC/C-Fzr1/Cdh1 hub in angiogenesis

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange

    The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    Get PDF
    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region

    Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes

    Full text link
    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma heating and wind acceleration, and discusses the challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript; accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake (Berlin: Springer
    corecore