525 research outputs found

    New Distance-Based approach for Genome-Wide Association Studies

    Get PDF
    With the raise of genome-wide association studies (GWAS), the analysis of typical GWAS data sets with thousands of potentially predictive single nucleotide-polymorphisms (SNPs) has become crucial in Biomedicine research. Here, we propose a new method to identify SNPs related to disease in case-control studies. The method, based on genetic distances between individuals, takes into account the possible population substructure, and avoids the issues of multiple testing. The method provides two ordered lists of SNPs; one with SNPs which minor alleles can be considered risk alleles for the disease, and another one with SNPs which minor alleles can be considered as protective. These two lists provide a useful tool to help the researcher to decide where to focus attention in a first stage

    Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant

    Full text link
    The quality of the secondary treatment effluent (STE) from a municipal wastewater treatment plant (MWWTP) is not good enough for some applications such as agriculture. Membrane ultrafiltration (UF) has been proven to be a reliable tertiary treatment to achieve the needed water quality. The productivity of the UF processes depends on the membrane fouling. The aim of this work is to prepare a model wastewater that could mimic the fouling trend of a STE wastewater from a MWWTP. Several model wastewaters consisting of different proteins and carbohydrates were used in the UF experiments. UF was also performed with a STE. The membrane used in the UF tests was a UFCM5 from Norit X-flow® hydrophilic polyethersulfone/polyvinylpyrrolidone blend hollow-fiber UF membrane of 200 KDa molecular weight cut-off with a fiber diameter of 1.5 mm. Membrane configuration was inside-out. UF tests with model wastewater and STE wastewater were compared. The results showed that the best model wastewater, which represents the fouling trend of STE wastewater is the model wastewater whose composition is 15 mg/l of bovine serum albumin and 5.5 mg/l of dextran.The authors of this work wish to gratefully acknowledge the financial support from the Generalitat Valenciana through the program "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013."Tora Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2014). Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant. Desalination and Water Treatment. 1-7. https://doi.org/10.1080/19443994.2014.939865S17Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Konieczny, K. (1998). Disinfection of surface and ground waters with polymeric ultrafiltration membranes. Desalination, 119(1-3), 251-258. doi:10.1016/s0011-9164(98)00166-0Madaeni, S. S., Fane, A. G., & Grohmann, G. S. (1995). Virus removal from water and wastewater using membranes. Journal of Membrane Science, 102, 65-75. doi:10.1016/0376-7388(94)00252-tArnal Arnal, J. M., Sancho Fernández, M., Martín Verdú, G., & Lora García, J. (2001). Design of a membrane facility for water potabilization and its application to Third World countries. Desalination, 137(1-3), 63-69. doi:10.1016/s0011-9164(01)00205-3Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Fan, L., Nguyen, T., Roddick, F. A., & Harris, J. L. (2008). Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 320(1-2), 135-142. doi:10.1016/j.memsci.2008.03.058Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Amin Saad, M. (2004). Early discovery of RO membrane fouling and real-time monitoring of plant performance for optimizing cost of water. Desalination, 165, 183-191. doi:10.1016/j.desal.2004.06.021Jayalakshmi, A., Rajesh, S., & Mohan, D. (2012). Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins. Applied Surface Science, 258(24), 9770-9781. doi:10.1016/j.apsusc.2012.06.028Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., & Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116, 366-371. doi:10.1016/j.biortech.2012.03.099Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 308(1-2), 152-161. doi:10.1016/j.memsci.2007.09.060Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1-3), 313-322. doi:10.1016/j.desal.2007.02.027MOUROUZIDISMOUROUZIS, S., & KARABELAS, A. (2006). Whey protein fouling of microfiltration ceramic membranes—Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. doi:10.1016/j.memsci.2006.05.012Carić, M. Đ., Milanović, S. D., Krstić, D. M., & Tekić, M. N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, 165(1), 83-88. doi:10.1016/s0376-7388(99)00221-5Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Hao, Y., Moriya, A., Maruyama, T., Ohmukai, Y., & Matsuyama, H. (2011). Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane. Journal of Membrane Science, 376(1-2), 247-253. doi:10.1016/j.memsci.2011.04.035Marcos, B., Moresoli, C., Skorepova, J., & Vaughan, B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. Journal of Membrane Science, 337(1-2), 136-144. doi:10.1016/j.memsci.2009.03.036Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Nguyen, T.-A., Yoshikawa, S., Karasu, K., & Ookawara, S. (2012). A simple combination model for filtrate flux in cross-flow ultrafiltration of protein suspension. Journal of Membrane Science, 403-404, 84-93. doi:10.1016/j.memsci.2012.02.026Domínguez Chabaliná, L., Rodríguez Pastor, M., & Rico, D. P. (2013). Characterization of soluble and bound EPS obtained from 2 submerged membrane bioreactors by 3D-EEM and HPSEC. Talanta, 115, 706-712. doi:10.1016/j.talanta.2013.05.062Viebke, C. (2000). Determination of molecular mass distribution of κ-carrageenan and xanthan using asymmetrical flow field-flow fractionation. Food Hydrocolloids, 14(3), 265-270. doi:10.1016/s0268-005x(99)00066-1Kelly, S. T., & Zydney, A. L. (1995). Mechanisms for BSA fouling during microfiltration. Journal of Membrane Science, 107(1-2), 115-127. doi:10.1016/0376-7388(95)00108-oHwang, K.-J., & Sz, P.-Y. (2011). Membrane fouling mechanism and concentration effect in cross-flow microfiltration of BSA/dextran mixtures. Chemical Engineering Journal, 166(2), 669-677. doi:10.1016/j.cej.2010.11.04

    Study of the influence of operational conditions and hollow-fiber diameter on the ultrafiltration performance of a secondary treatment effluent

    Full text link
    Secondary treatment effluents from municipal wastewater treatment plants (MWWTP) must achieve high water quality standards for their reuse in agriculture. To achieve these standards, ultrafiltration (UF) process, which is economically feasible, is carried out. However, UF has a drawback, membrane fouling, which causes operating difficulties and an increment of the operating cost. In order to minimize this phenomenon, it is important to determine the best operational conditions. Wastewater samples provided by MWWTP have a lot of variability in their composition due to factors such as temperature, efficiency of the secondary treatment, etc. Besides, the soluble microbial products of the secondary effluent are dependent on the type of the biological treatment implemented and its operating conditions. A model wastewater feed solution was prepared consisting of 15 mg/L of bovine serum albumin and 5.5 mg/L of dextran. In this research, UF tests were performed with the optimal simulated wastewater using two membranes UFCM5 Norit X-flow® hollow-fiber: one of them with a fiber diameter of 1.5 mm and the other one with a fiber diameter of 0.8 mm. The operational conditions, which influence membrane fouling, were varied in the range of 62 100 kPa for transmembrane pressure (TMP) and in the range of 0.8 1.2 m/s for cross-flow velocity (CFV). The best operational conditions were selected in terms of higher permeate flux. The highest permeate flux was obtained for the membrane of 0.8 mm and the lower energy consumption was achieved at a CFV of 1.2 m/s and a TMP of 62 kPa.Torà Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2015). Study of the influence of operational conditions and hollow-fiber diameter on the ultrafiltration performance of a secondary treatment effluent. Desalination and Water Treatment. 1-7. doi:10.1080/19443994.2015.1118887S1

    Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater

    Full text link
    Secondary treatment effluents from Municipal Wastewater Treatment Plants require tertiary treatments to be reused in agriculture. Among tertiary treatment technologies, ultrafiltration has been proven to be a reliable reclamation process. Nevertheless this technique has an important disadvantage: membrane fouling. This phenomenon causes decline in permeate flux with time and increases the operational costs. Due to the fact that secondary effluents from Municipal Wastewater Treatment Plants contain a large amount of different compounds and that there is certain variability in their composition, the use of a simplified model wastewater consisting of only few compounds may help to simulate better the ultrafiltration fouling trend. The main secondary treatment effluent components responsible for fouling membrane during ultrafiltration tests are extracellular polymeric substances. These substances are mainly composed of proteins and polysaccharides, thus they are commonly used to prepare model wastewaters. This work consisted in two parts. Firstly, a model wastewater was selected among different model solutions mimicking secondary treatment effluent. Secondly, ultrafiltration behaviour of the selected model solution was compared with the behaviour of the secondary effluent in the ultrafiltration tests at different cross-flow velocities and transmembrane pressures. The membrane used in the ultrafiltration tests was UFCM5 Norit X-flow® hollow-fiber. To prepare model wastewaters, three parameters (proteins and carbohydrates concentrations and chemical oxygen demand) were considered. The model wastewater that represented the best the fouling trend of the secondary treatment effluent had a composition of 15 mg/l of bovine serum albumin and 5.5 mg/l of dextranThe authors wish to gratefully acknowledge the financial support of the Generalitat Valenciana through the project "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013."Tora Grau, M.; Soler Cabezas, JL.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2015). Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater. Desalination and Water Treatment. 1-9. doi:10.1080/19443994.2014.999714S19Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Muthukumaran, S., Jegatheesan, J. V., & Baskaran, K. (2013). Comparison of fouling mechanisms in low-pressure membrane (MF/UF) filtration of secondary effluent. Desalination and Water Treatment, 52(4-6), 650-662. doi:10.1080/19443994.2013.826324Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Fan, L., Nguyen, T., Roddick, F. A., & Harris, J. L. (2008). Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction. Journal of Membrane Science, 320(1-2), 135-142. doi:10.1016/j.memsci.2008.03.058Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 308(1-2), 152-161. doi:10.1016/j.memsci.2007.09.060Nguyen, S. T., & Roddick, F. A. (2011). Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent. Desalination and Water Treatment, 34(1-3), 94-99. doi:10.5004/dwt.2011.2790Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Hwang, K.-J., & Chiang, Y.-C. (2014). Comparisons of membrane fouling and separation efficiency in protein/polysaccharide cross-flow microfiltration using membranes with different morphologies. Separation and Purification Technology, 125, 74-82. doi:10.1016/j.seppur.2014.01.041Yamamura, H., Okimoto, K., Kimura, K., & Watanabe, Y. (2014). Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes. Water Research, 54, 123-136. doi:10.1016/j.watres.2014.01.024Nigam, M. O., Bansal, B., & Chen, X. D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes. Desalination, 218(1-3), 313-322. doi:10.1016/j.desal.2007.02.027MOUROUZIDISMOUROUZIS, S., & KARABELAS, A. (2006). Whey protein fouling of microfiltration ceramic membranes—Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. doi:10.1016/j.memsci.2006.05.012Carić, M. Đ., Milanović, S. D., Krstić, D. M., & Tekić, M. N. (2000). Fouling of inorganic membranes by adsorption of whey proteins. Journal of Membrane Science, 165(1), 83-88. doi:10.1016/s0376-7388(99)00221-5Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Vincent-Vela, M.-C., Álvarez-Blanco, S., Lora-García, J., & Bergantiños-Rodríguez, E. (2009). Estimation of the gel layer concentration in ultrafiltration: Comparison of different methods. Desalination and Water Treatment, 3(1-3), 157-161. doi:10.5004/dwt.2009.454Valiño, V., San Román, M. F., Ibáñez, R., Benito, J. M., Escudero, I., & Ortiz, I. (2014). Accurate determination of key surface properties that determine the efficient separation of bovine milk BSA and LF proteins. Separation and Purification Technology, 135, 145-157. doi:10.1016/j.seppur.2014.07.051Luck, P. J., Vardhanabhuti, B., Yong, Y. H., Laundon, T., Barbano, D. M., & Foegeding, E. A. (2013). Comparison of functional properties of 34% and 80% whey protein and milk serum protein concentrates. Journal of Dairy Science, 96(9), 5522-5531. doi:10.3168/jds.2013-6617Marcos, B., Moresoli, C., Skorepova, J., & Vaughan, B. (2009). CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. Journal of Membrane Science, 337(1-2), 136-144. doi:10.1016/j.memsci.2009.03.036Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Salahi, A., Mohammadi, T., Rahmat Pour, A., & Rekabdar, F. (2009). Oily wastewater treatment using ultrafiltration. Desalination and Water Treatment, 6(1-3), 289-298. doi:10.5004/dwt.2009.480Janssen, A. N., van Agtmaal, J., van den Broek, W. B. P., de Koning, J., Menkveld, H. W. H., Schrotter, J.-C., … van der Graaf, J. H. J. M. (2008). Monitoring of SUR to control and enhance the performance of dead-end ultrafiltration installations treating wwtp effluent. Desalination, 231(1-3), 99-107. doi:10.1016/j.desal.2007.10.024Torà-Grau, M., Soler-Cabezas, J. L., Vincent-Vela, M. C., Mendoza-Roca, J. A., & Martínez-Francisco, F. J. (2014). Comparison of different model solutions to simulate membrane fouling in the ultrafiltration of a secondary effluent from a municipal wastewater treatment plant. Desalination and Water Treatment, 1-7. doi:10.1080/19443994.2014.93986

    Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms

    Full text link
    Ultrafiltration (UF) with hollow fiber membranes is a proven membrane technique that can achieve high water quality standards as a tertiary treatment in municipal wastewater treatment plants. However, UF has a major drawback, membrane fouling, which causes losses of productivity and increases operation costs. Thus, the aim of this work is to model membrane fouling in the UF of a secondary treatment effluent. The tests were carried out with a model wastewater solution that consisted of bovine serum albumin and dextran. Three different transmembrane pressures and three different crossflow velocities were tested. Several fouling models available in the literature, and new models proposed, were fitted to permeate flux decline experimental data. The models studied by other authors and considered in this study were: Hermia s models (complete, intermediate, standard pore blocking and gel layer) and Belfort s model. The new models proposed in this work were: modified Belfort s model, quadratic exponential model, logarithmic inversed model, double exponential model and tangent inversed model. The fitting accuracy of the models was determined in terms of the R-squared and standard deviation. The results showed that the model that had the higher fitting accuracy was the logarithmic inversed model. Among the Hermia s models, the model that had the higher fitting accuracy was the intermediate pore blocking model. Therefore, the predominant fouling mechanism was determined and it was the intermediate pore blocking modelThe authors wish to gratefully acknowledge the financial support of the Generalitat Valenciana through the project "Ayudas para la realizacion de proyectos I+D para grupos de investigacion emergentes GV/2013".Soler Cabezas, JL.; Tora Grau, M.; Vincent Vela, MC.; Mendoza Roca, JA.; Martínez Francisco, FJ. (2014). Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms. Desalination and Water Treatment. 1-11. doi:10.1080/19443994.2014.969320S111Gadani, V., Irwin, R., & Mandra, V. (1996). Ultrafiltration as a tertiary treatment: Joint research program on membranes. Desalination, 106(1-3), 47-53. doi:10.1016/s0011-9164(96)00091-4Illueca-Muñoz, J., Mendoza-Roca, J. A., Iborra-Clar, A., Bes-Piá, A., Fajardo-Montañana, V., Martínez-Francisco, F. J., & Bernácer-Bonora, I. (2008). Study of different alternatives of tertiary treatments for wastewater reclamation to optimize the water quality for irrigation reuse. Desalination, 222(1-3), 222-229. doi:10.1016/j.desal.2007.01.157Muthukumaran, S., Jegatheesan, J. V., & Baskaran, K. (2013). Comparison of fouling mechanisms in low-pressure membrane (MF/UF) filtration of secondary effluent. Desalination and Water Treatment, 52(4-6), 650-662. doi:10.1080/19443994.2013.826324Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011Qin, J.-J., Oo, M. H., Lee, H., & Kolkman, R. (2004). Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. Journal of Membrane Science, 243(1-2), 107-113. doi:10.1016/j.memsci.2004.06.010Konieczny, K. (1998). Disinfection of surface and ground waters with polymeric ultrafiltration membranes. Desalination, 119(1-3), 251-258. doi:10.1016/s0011-9164(98)00166-0Madaeni, S. S., Fane, A. G., & Grohmann, G. S. (1995). Virus removal from water and wastewater using membranes. Journal of Membrane Science, 102, 65-75. doi:10.1016/0376-7388(94)00252-tArnal Arnal, J. M., Sancho Fernández, M., Martín Verdú, G., & Lora García, J. (2001). Design of a membrane facility for water potabilization and its application to Third World countries. Desalination, 137(1-3), 63-69. doi:10.1016/s0011-9164(01)00205-3Arévalo, J., Garralón, G., Plaza, F., Moreno, B., Pérez, J., & Gómez, M. Á. (2009). Wastewater reuse after treatment by tertiary ultrafiltration and a membrane bioreactor (MBR): a comparative study. Desalination, 243(1-3), 32-41. doi:10.1016/j.desal.2008.04.013Katsoufidou, K., Yiantsios, S. G., & Karabelas, A. J. (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 220(1-3), 214-227. doi:10.1016/j.desal.2007.02.038Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040Henderson, R. K., Subhi, N., Antony, A., Khan, S. J., Murphy, K. R., Leslie, G. L., … Le-Clech, P. (2011). Evaluation of effluent organic matter fouling in ultrafiltration treatment using advanced organic characterisation techniques. Journal of Membrane Science, 382(1-2), 50-59. doi:10.1016/j.memsci.2011.07.041Xiao, D., Li, W., Chou, S., Wang, R., & Tang, C. Y. (2012). A modeling investigation on optimizing the design of forward osmosis hollow fiber modules. Journal of Membrane Science, 392-393, 76-87. doi:10.1016/j.memsci.2011.12.006Kaya, Y., Barlas, H., & Arayici, S. (2011). Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model. Journal of Membrane Science, 367(1-2), 45-54. doi:10.1016/j.memsci.2010.10.037Amin Saad, M. (2004). Early discovery of RO membrane fouling and real-time monitoring of plant performance for optimizing cost of water. Desalination, 165, 183-191. doi:10.1016/j.desal.2004.06.021Yu, C.-H., Fang, L.-C., Lateef, S. K., Wu, C.-H., & Lin, C.-F. (2010). Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration. Journal of Hazardous Materials, 177(1-3), 1153-1158. doi:10.1016/j.jhazmat.2010.01.022Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z., & Li, G. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272(1-3), 1-8. doi:10.1016/j.desal.2011.01.051Jayalakshmi, A., Rajesh, S., & Mohan, D. (2012). Fouling propensity and separation efficiency of epoxidated polyethersulfone incorporated cellulose acetate ultrafiltration membrane in the retention of proteins. Applied Surface Science, 258(24), 9770-9781. doi:10.1016/j.apsusc.2012.06.028Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., & Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116, 366-371. doi:10.1016/j.biortech.2012.03.099Zator, M., Ferrando, M., López, F., & Güell, C. (2007). Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures. Journal of Membrane Science, 301(1-2), 57-66. doi:10.1016/j.memsci.2007.05.038Sheng, G.-P., Yu, H.-Q., & Li, X.-Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882-894. doi:10.1016/j.biotechadv.2010.08.001Nguyen, S. T., & Roddick, F. A. (2011). Chemical cleaning of ultrafiltration membrane fouled by an activated sludge effluent. Desalination and Water Treatment, 34(1-3), 94-99. doi:10.5004/dwt.2011.2790Xiao, K., Wang, X., Huang, X., Waite, T. D., & Wen, X. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342(1-2), 22-34. doi:10.1016/j.memsci.2009.06.016Suh, C., Lee, S., & Cho, J. (2013). Investigation of the effects of membrane fouling control strategies with the integrated membrane bioreactor model. Journal of Membrane Science, 429, 268-281. doi:10.1016/j.memsci.2012.11.042Duclos-Orsello, C., Li, W., & Ho, C.-C. (2006). A three mechanism model to describe fouling of microfiltration membranes. Journal of Membrane Science, 280(1-2), 856-866. doi:10.1016/j.memsci.2006.03.005Davis, R. H. (1992). Modeling of Fouling of Crossflow Microfiltration Membranes. Separation and Purification Methods, 21(2), 75-126. doi:10.1080/03602549208021420Bhattacharjee, S., & Bhattacharya, P. K. (1992). Flux decline behaviour with low molecular weight solutes during ultrafiltration in an unstirred batch cell. Journal of Membrane Science, 72(2), 149-161. doi:10.1016/0376-7388(92)80195-pMallubhotla, H., & Belfort, G. (1996). Semiempirical Modeling of Cross-Flow Microfiltration with Periodic Reverse Filtration. Industrial & Engineering Chemistry Research, 35(9), 2920-2928. doi:10.1021/ie950719tSalahi, A., Abbasi, M., & Mohammadi, T. (2010). Permeate flux decline during UF of oily wastewater: Experimental and modeling. Desalination, 251(1-3), 153-160. doi:10.1016/j.desal.2009.08.006Field, R. W., Wu, D., Howell, J. A., & Gupta, B. B. (1995). Critical flux concept for microfiltration fouling. Journal of Membrane Science, 100(3), 259-272. doi:10.1016/0376-7388(94)00265-zVincent Vela, M. C., Álvarez Blanco, S., Lora García, J., & Bergantiños Rodríguez, E. (2009). Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chemical Engineering Journal, 149(1-3), 232-241. doi:10.1016/j.cej.2008.10.027Hasan, A., Peluso, C. R., Hull, T. S., Fieschko, J., & Chatterjee, S. G. (2013). A surface-renewal model of cross-flow microfiltration. Brazilian Journal of Chemical Engineering, 30(1), 167-186. doi:10.1590/s0104-66322013000100019ANG, W., & ELIMELECH, M. (2007). Protein (BSA) fouling of reverse osmosis membranes: Implications for wastewater reclamation. Journal of Membrane Science, 296(1-2), 83-92. doi:10.1016/j.memsci.2007.03.018Muthukumaran, S., & Baskaran, K. (2013). Comparison of the performance of ceramic microfiltration and ultrafiltration membranes in the reclamation and reuse of secondary wastewater. Desalination and Water Treatment, 52(4-6), 670-677. doi:10.1080/19443994.2013.826333Tasselli, F., Cassano, A., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 57(1), 94-102. doi:10.1016/j.seppur.2007.03.007Chung, T.-S., Qin, J.-J., & Gu, J. (2000). Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 55(6), 1077-1091. doi:10.1016/s0009-2509(99)00371-1Swaminathan, T., Chaudhuri, M., & Sirkar, K. K. (1979). Anomalous flux behavior in initial time stirred protein ultrafiltration through partially permeable membranes. Journal of Applied Polymer Science, 24(6), 1581-1585. doi:10.1002/app.1979.070240620Ahmad, A. L., & Hairul, N. A. H. (2009). Protein–membrane interactions in forced-flow electrophoresis of protein solutions: Effect of initial pH and initial ionic strength. Separation and Purification Technology, 66(2), 273-278. doi:10.1016/j.seppur.2008.12.027Gu, Z. (2007). Across-sample Incomparability of R2s and Additional Evidence on Value Relevance Changes Over Time. Journal of Business Finance & Accounting, 34(7-8), 1073-1098. doi:10.1111/j.1468-5957.2007.02044.xVincent, T., Parodi, A., & Guibal, E. (2008). Pt recovery using Cyphos IL-101 immobilized in biopolymer capsules. Separation and Purification Technology, 62(2), 470-479. doi:10.1016/j.seppur.2008.02.025Daufin, G., Merin, U., Labbé, J. P., Quémerais, A., & Kerhervé, F. L. (1991). Cleaning of inorganic membranes after whey and milk ultrafiltration. Biotechnology and Bioengineering, 38(1), 82-89. doi:10.1002/bit.260380111Daufin, G., Merin, U., Kerherve, F.-L., Labbe, J.-P., Quemerais, A., & Bousser, C. (1992). Efficiency of cleaning agents for an inorganic membrane after milk ultrafiltration. Journal of Dairy Research, 59(1), 29-38. doi:10.1017/s0022029900030211Morão, A., Nunes, J. C., Sousa, F., Amorim, M. T. P. de, Escobar, I. C., & Queiroz, J. A. (2009). Development of a model for membrane filtration of long and flexible macromolecules: Application to predict dextran and linear DNA rejections in ultrafiltration. Journal of Membrane Science, 336(1-2), 61-70. doi:10.1016/j.memsci.2009.03.007Ouammou, M., Tijani, N., Calvo, J. I., Velasco, C., Martín, A., Martínez, F., … Hernández, A. (2007). Flux decay in protein microfiltration through charged membranes as a function of pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298(3), 267-273. doi:10.1016/j.colsurfa.2006.11.006Mohammadi, T., Kazemimoghadam, M., & Saadabadi, M. (2003). Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions. Desalination, 157(1-3), 369-375. doi:10.1016/s0011-9164(03)00419-3Ng, C. Y., Mohammad, A. W., Ng, L. Y., & Jahim, J. M. (2014). Membrane fouling mechanisms during ultrafiltration of skimmed coconut milk. Journal of Food Engineering, 142, 190-200. doi:10.1016/j.jfoodeng.2014.06.005Mah, S.-K., Chuah, C.-K., Cathie Lee, W. P., & Chai, S.-P. (2012). Ultrafiltration of palm oil–oleic acid–glycerin solutions: Fouling mechanism identification, fouling mechanism analysis and membrane characterizations. Separation and Purification Technology, 98, 419-431. doi:10.1016/j.seppur.2012.07.020Said, M., Ahmad, A., Mohammad, A. W., Nor, M. T. M., & Sheikh Abdullah, S. R. (2015). Blocking mechanism of PES membrane during ultrafiltration of POME. Journal of Industrial and Engineering Chemistry, 21, 182-188. doi:10.1016/j.jiec.2014.02.023Amin, I. N. H. M., Mohammad, A. W., Markom, M., Peng, L. C., & Hilal, N. (2010). Analysis of deposition mechanism during ultrafiltration of glycerin-rich solutions. Desalination, 261(3), 313-320. doi:10.1016/j.desal.2010.04.01

    The Puzzling Stability of Monatomic Gold Wires

    Full text link
    We have examined theoretically the spontaneous thinning process of tip-suspended nanowires, and subsequently studied the structure and stability of the monatomic gold wires recently observed by Transmission Electron Microscopy (TEM). The methods used include thermodynamics, classical many-body force simulations, Local Density (LDA) and Generalized Gradient (GGA) electronic structure calculations as well as ab-initio simulations including the two tips. The wire thinning is well explained in terms of a thermodynamic tip suction driving migration of surface atoms from the wire to the tips. For the same reason the monatomic wire becomes progressively stretched. Surprisingly, however, all calculations so far indicate that the stretched monatomic gold wire should be unstable against breaking, contrary to the apparent experimental stability. The possible reasons for the observed stability are discussed.Comment: 4 figure

    Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: Ipsi- and contralateral projections

    Get PDF
    The present study describes the thalamic innervation coming from the rat parafascicular nucleus (PF) onto striatal and subthalamic efferent neurons projecting either to the globus pallidus (GP) or to the substantia nigra pars reticulata (SNr) by using a protocol for multiple neuroanatomical tracing. Both striatofugal neurons targeting the ipsilateral SNr (direct pathway) as well as striatal efferent neurons projecting to the ipsilateral GP (indirect pathway) were located within the terminal fields of the thalamostriatal afferents. In the subthalamic nucleus (STN), both neurons projecting to ipsilateral GP as well as neurons projecting to ipsilateral SNr also appear to receive thalamic afferents. Although the projections linking the caudal intralaminar nuclei with the ipsilateral striatum and STN are far more prominent, we also noticed that thalamic axons could gain access to the contralateral STN. Furthermore, a small number of STN neurons were seen to project to both the contralateral GP and PF nuclei. These ipsi- and contralateral projections enable the caudal intralaminar nuclei to modulate the activity of both the direct and the indirect pathway

    Rasgos básicos del neógeno del Mediterráneo español

    Get PDF
    Mediante tecnologías de subsuelo propias de la industria petrolífera, se resumen los datos básicos tectosedimentarios de la cuenca neógena mediterránea española, su evolución y su conexión con los dispositivos conocidos en tierra.A short description of the tectonic and sedimentary processes affecting the Spanish Mediterranean Mio-Pliocene basin is presented, through the information obtained by subsurface oil industry methods

    Patrones de abundancia de la macrofauna asociada a macroalgas marinas a largo de la Península Ibérica

    Get PDF
    macroalgae were studied on a spatial scale along the Iberian Peninsula. Nineteen stations and four dominant algae were selected (intertidal zone: Corallina elongata and Asparagopsis armata; subtidal zone: Stypocaulon scoparium and Cladostephus spongiosus). Five environmental factors were also considered (seawater temperature, conductivity, dissolved oxygen, turbidity and pH). The Atlantic coast was characterized by lower temperature and conductivity as well as higher values of oxygen and turbidity than the Mediterranean coast. A total of 106274 macrofaunal specimens were sorted and examined (68% arthropods, 27% molluscs, 4% annelids and 1% echinoderms). Crustaceans were the dominant group in all the macroalgae (ca. 80% in C. elongata and A. armata, ca. 50% in S. scoparium and C. spongiosus) followed by molluscs, which were more abundant in the subtidal algae (ca. 40%) than in intertidal ones (ca.10%). Abundance patterns of macrofauna along the Iberian Peninsula were similar in the four studied algae. Most of crustaceans belonged to the order Amphipoda, which showed high densities (>1000 ind/1000 ml algae) along the whole Peninsula; isopods showed the highest abundances in the Atlantic, while tanaids, cumaceans and decapods were more abundant in the Mediterranean. Among molluscs, gasteropods showed highest abundances along the Atlantic coasts, whereas bivalves showed higher densities along the MediterraneanSe llevó a cabo un estudio espacial de los patrones de abundancia y distribución de la macrofauna asociada a macroalgas a lo largo de la Península Ibérica. Se seleccionaron 19 estaciones y 4 algas dominantes (zona intermareal: Corallina elongata y Asparagopsis armata; zona submareal: Stypocaulon scoparium y Cladostephus spongiosus). Se consideraron también cinco variables ambientales (temperatura del agua, conductividad, oxígeno disuelto, turbidez y pH). La costa atlántica se caracterizó por valores más bajos de temperatura y conductividad, y más altos de oxígeno y turbidez. Se examinaron 106274 individuos de la macrofauna (68% artrópodos, 27% moluscos, 4% anélidos y 1% equinodermos). Los crustáceos fueron dominantes en todas las macroalgas (alrededor del 80% en C. elongata y A. armata, y en torno al 50% en S. scoparium y C. spongiosus), seguidos por los moluscos, que fueron más abundantes en el submareal (40%) que en el intermareal (10%). Los patrones de abundancia de la macrofauna a lo largo de la Península Ibérica fueron similares en las cuatro algas estudiadas. La mayoría de los crustáceos pertenecieron al orden Amphipoda, que mostró densidades muy altas (>1000 ind/1000 ml alga) en toda la Península; los isópodos mostraron las mayores densidades en el Atlántico, mientras que los tanaidáceos, cumáceos y decápodos fueron más abundantes en el Mediterráneo. Entre los moluscos, los gasterópodos mostraron abundancias mayores en el Atlántico, mientras que los bivalvos dominaron en el Mediterráneo. Teniendo en cuenta que todas las estaciones seleccionadas no tenían influencia antrópica importante, los patrones de abundancia obtenidos podrían explicarse en base a diferencias naturales en la temperatura del agua, oxígeno, conductividad y turbidez, existiendo un gradiente transicional entre taxones de aguas más cálidas (del norte de Africa y del Mediterráneo) y taxones de aguas más frías (del Mar del Norte y el Ártico)
    corecore