4 research outputs found

    Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells

    No full text
    A doubling of the photocurrent due to light trapping is demonstrated by the combination of silvernanoparticles with a highly reflective back scatterer fabricated by Snow Globe Coating on the rear of a 2 μm polycrystalline silicon thin film solar cell. The binder free high refractive index titania particles can overcome light losses due to transmission. Modelling indicates that adding plasmonicnanoparticles to the back scatterer widens the angular distribution of scattered light such that over 80% of long wavelength light is scattered outside the Si/air loss cone and trapped in the cell, compared to 30% for the titania alone.This project was funded by the Austrian Science Fund (FWF): J-2979, the Australian Research Council and the Australian Solar Institute

    Towards the Determination of Superdeformation in 42Ca

    No full text
    International audienceThe Coulomb excitation experiment to study electromagnetic structure of low-lying states in Ca-42 with a focus on a possible superdeformation in this nucleus was performed at the Laboratori Nazionali di Legnaro in Italy. Preliminary values of the determined quadrupole deformation parameters for both the ground state band and the presumed superdeformed band are presented. DOI:10.5506/APhysPolB.44.61

    Tracking of Airborne Radionuclides from the Damaged Fukushima Dai-Ichi Nuclear Reactors by European Networks

    No full text
    Radioactive emissions into the atmosphere from the damaged reactors of the Fukushima Dai-ichi nuclear power plant (NPP) started on March 12th, 2011. Among the various radionuclides released, iodine-131 ((131)I) and cesium isotopes ((137)Cs and (134)Cs) were transported across the Pacific toward the North American continent and reached Europe despite dispersion and washout along the route of the contaminated air masses. In Europe, the first signs of the releases were detected 7 days later while the first peak of activity level was observed between March 28th and March 30th. Time variations over a 20-day period and spatial variations across more than 150 sampling locations in Europe made it possible to characterize the contaminated air masses. After the Chernobyl accident, only a few measurements of the gaseous (131)I fraction were conducted compared to the number of measurements for the particulate fraction. Several studies had already pointed out the importance of the gaseous (131)I and the large underestimation of the total (131)I airborne activity level, and subsequent calculations of inhalation dose, if neglected. The measurements made across Europe following the releases from the Fukushima NPP reactors have provided a significant amount of new data on the ratio of the gaseous (131)I fraction to total (131)I, both on a spatial scale and its temporal variation. It can be pointed out that during the Fukushima event, the (134)Cs to (137)Cs ratio proved to be different from that observed after the Chernobyl accident. The data set provided in this paper is the most comprehensive survey of the main relevant airborne radionuclides from the Fukushima reactors, measured across Europe. A rough estimate of the total (131)I inventory that has passed over Europe during this period was LT 1% of the released amount. According to the measurements, airborne activity levels remain of no concern for public health in Europe
    corecore