606 research outputs found

    Diagnostic accuracy of haemophilia early arthropathy detection with ultrasound (HEAD-US): A comparative magnetic resonance imaging (MRI) study

    Get PDF
    Background. Repeated haemarthroses affect approximately 90% of patients with severe haemophilia and lead to progressive arthropathy, which is the main cause of morbidity in these patients. Diagnostic imaging can detect even subclinical arthropathy changes and may impact prophylactic treatment. Magnetic resonance imagining (MRI) is generally the gold standard tool for precise evaluation of joints, but it is not easily feasible in regular follow-up of patients with haemophilia. The development of the standardized ultrasound (US) protocol for detection of early changes in haemophilic arthropathy (HEAD-US) opened new perspectives in the use of US in management of these patients. The HEAD-US protocol enables quick evaluation of the six mostly affected joints in a single study. The aim of this prospective study was to determine the diagnostic accuracy of the HEAD-US protocol for the detection and quantification of haemophilic arthropathy in comparison to the MRI. Patients and methods. The study included 30 patients with severe haemophilia. We evaluated their elbows, ankles and knees (overall 168 joints) by US using the HEAD-US protocol and compared the results with the MRI using the International Prophylaxis Study Group (IPSG) MRI score. Results. The results showed that the overall HEAD-US score correlated very highly with the overall IPSG MRI score (r = 0.92). Correlation was very high for the evaluation of the elbows and knees (r 48 0.95), and slightly lower for the ankles (r 48 0.85). Conclusions. HEAD-US protocol proved to be a quick, reliable and accurate method for the detection and quantification of haemophilic arthropathy

    Charge collection and field profile studies of heavily irradiated strip sensors for the ATLAS inner tracker upgrade

    Get PDF
    The ATLAS group has evaluated the charge collection in silicon microstrip sensors irradiated up to a fluence of 1×1016 neq/cm2, exceeding the maximum of 1.6×1015 neq/cm2 expected for the strip tracker during the high luminosity LHC (HL-LHC) period including a safety factor of 2. The ATLAS12, n+-on-p type sensor, which is fabricated by Hamamatsu Photonics (HPK) on float zone (FZ) substrates, is the latest barrel sensor prototype. The charge collection from the irradiated 1×1 cm2 barrel test sensors has been evaluated systematically using penetrating β-rays and an Alibava readout system. The data obtained at different measurement sites are compared with each other and with the results obtained from the previous ATLAS07 design. The results are very consistent, in particular, when the deposit charge is normalized by the sensor's active thickness derived from the edge transient current technique (edge-TCT) measurements. The measurements obtained using β-rays are verified to be consistent with the measurements using an electron beam. The edge-TCT is also effective for evaluating the field profiles across the depth. The differences between the irradiated ATLAS07 and ATLAS12 samples have been examined along with the differences among the samples irradiated with different radiation sources: neutrons, protons, and pions. The studies of the bulk properties of the devices show that the devices can yield a sufficiently large signal for the expected fluence range in the HL-LHC, thereby acting as precision tracking sensors

    Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Get PDF
    A radiation hard nþ-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS ITk Strip Sensor collaboration” and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in “punchthrough protection” (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1 1016 neq/cm2 , by reactor neutron fluence of 1 1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for microdischarge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021)

    Get PDF
    As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Sigma (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling

    Get PDF
    We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors
    • …
    corecore