259 research outputs found

    Energetische Bewertung der Bereitstellung ausgewählter lokaler Lebensmittel am Beispiel dreier Fleischarten

    Get PDF
    In der vorliegenden Studie erfolgt eine energetische Bewertung der Bereitstellung dreier Fleischarten als Beispiel für lokale Lebensmittel. Anwendung findet eine modifizierte Form zur Berechnung des Kumulierten Energieaufwandes (KEA). Zu diesem Zweck erfolgt die Untersuchung lokaler Bereitstellungsprozesse für Schweinefleisch, Rindfleisch und Lammfleisch sowie ungarischer Bereitstellungs-prozesse für Schweinefleisch (in Ungarn regional bereitgestellt) mittels standardisierter Fragebögen hinsichtlich der Produktions- und Vermarktungsabläufe. Darüber hinaus findet eine vergleichende Bewertung einer Prozesskette für argentinisches Rindfleisch statt. Anhand der Module Transport, Mast-Elektroenergie, Mast- s.E. (sonstige Energie), Schlachtung/Zerlegung sowie Distribution findet die Ergebnisdarstellung mittels Allokation auf die funktionelle Einheit von 1 kg Fleisch ohne Knochen statt. Nach Auswertung aller energierelevanten Daten ergibt sich die Feststellung, dass die Umsätze an Endenergie und Primärenergie sowie die CO2-Emissionen mit steigender Betriebsgröße abnehmen. Die Verbrauchereinschätzung, dass lokal/regional erzeugte Lebensmittel geringere Umweltbelastungen -hinsichtlich Energieumsatz und CO2-Emission- verursachen als global erzeugte Lebensmittel, kann ebenso wie in bisher durchgeführten Untersuchungen zu Energiebilanzierungen von Prozessketten der Lebensmittel-bereitstellung (Fruchtsaft, Lammfleisch, Wein, Äpfel) nicht aufrechterhalten werden. Vielmehr verifizieren die Ergebnisse der hier durchgeführten qualitativen Analysen von Fallbeispielen die von SCHLICH 2004 geprägte TheorieThis work presents an energy evaluation of the supply chains of pork, beef and lamb. The execution of the analyses is oriented at a modified form of the CED (cumulated energy demand). For this purpose the ways of production and marketing of pork (Germany-Hessen and Hungary), beef (Germany-Hessen) an lamb (Germany-Hessen) from local supply chains are investigated. Data collection is carried out using standardized questionnaires. In addition to the mentioned analyses an evaluation of a global supply chain for beef from argentina is carried out as to compare local and global supply chains. Each supply chain will be subdivided to the modules transport, breeding-electrical energy, breeding-other energy, slaughtering/dissembling and distribution. The evaluation is achieved by allocation the energy turnover and carbon dioxyde emissions to the functional unit of 1 kg meat without bones. It is found that the energy turnover and CO2-emissions show a declining devolution related to an increasing size of businesses. Private consumer estimation expecting a lower energy turnover and environmental impact associated to meat of local origin can not be confirmed. In the same way former case studies on different food –juices, lamb, apples and wine- do, the work at hand demonstrates that the specific ecological impact does not depend on transport distance but rather on business size. It supports the theory o

    Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse.

    Get PDF
    The skin is a highly regenerative organ which plays critical roles in protecting the body and sensing its environment. Consequently, morbidity and mortality associated with skin defects represent a significant health issue. To identify genes important in skin development and homeostasis, we have applied a high throughput, multi-parameter phenotype screen to the conditional targeted mutant mice generated by the Wellcome Trust Sanger Institute's Mouse Genetics Project (Sanger-MGP). A total of 562 different mouse lines were subjected to a variety of tests assessing cutaneous expression, macroscopic clinical disease, histological change, hair follicle cycling, and aberrant marker expression. Cutaneous lesions were associated with mutations in 23 different genes. Many of these were not previously associated with skin disease in the organ (Mysm1, Vangl1, Trpc4ap, Nom1, Sparc, Farp2, and Prkab1), while others were ascribed new cutaneous functions on the basis of the screening approach (Krt76, Lrig1, Myo5a, Nsun2, and Nf1). The integration of these skin specific screening protocols into the Sanger-MGP primary phenotyping pipelines marks the largest reported reverse genetic screen undertaken in any organ and defines approaches to maximise the productivity of future projects of this nature, while flagging genes for further characterisation

    TGF-β mimic proteins form an extended gene family in the murine parasite Heligmosomoides polygyrus

    Get PDF
    We recently reported the discovery of a new parasite-derived protein that functionally mimics the immunosuppressive cytokine transforming growth factor (TGF)-β. The Heligmosomoides polygyrus TGF-β Mimic (Hp-TGM) shares no homology to any TGF-β family member, however it binds the mammalian TGF-β receptor and induces expression of Foxp3, the canonical transcription factor of both mouse and human regulatory T cells. Hp-TGM consists of five atypical Complement Control Protein (CCP, Pfam 00084) domains, each lacking certain conserved residues and 12–15 amino acids longer than the 60–70 amino acids consensus domain, but with a recognizable 3-cysteine, tryptophan, cysteine motif. We now report on the identification of a family of nine related Hp-TGM homologues represented in the secreted proteome and transcriptome of H. polygyrus. Recombinant proteins from five of the nine new TGM members were tested for TGF-β activity, but only two were functionally active in an MFB-F11 reporter assay, and by the induction of T cell Foxp3 expression. Sequence comparisons reveal that proteins with functional activity are similar or identical to Hp-TGM across the first three CCP domains, but more variable in domains 4 and 5. Inactive proteins diverged in all domains, or lacked some domains entirely. Testing truncated versions of Hp-TGM confirmed that domains 1–3 are essential for full activity in vitro, while domains 4 and 5 are not required. Further studies will elucidate whether these latter domains fulfill other functions in promoting host immune regulation during infection and if the more divergent family members play other roles in immunomodulation

    The under-ice microbiome of seasonally frozen lakes

    Get PDF
    Compared to the well-studied open water of the “growing” season, under-ice conditions in lakes are characterized by low and rather constant temperature, slow water movements, limited light availability, and reduced exchange with the surrounding landscape. These conditions interact with ice-cover duration to shape microbial processes in temperate lakes and ultimately influence the phenology of community and ecosystem processes. We review the current knowledge on microorganisms in seasonally frozen lakes. Specifically, we highlight how under-ice conditions alter lake physics and the ways that this can affect the distribution and metabolism of auto- and heterotrophic microorganisms. We identify functional traits that we hypothesize are important for understanding under-ice dynamics and discuss how these traits influence species interactions. As ice coverage duration has already been seen to reduce as air temperatures have warmed, the dynamics of the under-ice microbiome are important for understanding and predicting the dynamics and functioning of seasonally frozen lakes in the near future

    Genome-Wide ENU Mutagenesis in Combination with High Density SNP Analysis and Exome Sequencing Provides Rapid Identification of Novel Mouse Models of Developmental Disease

    No full text
    BACKGROUND Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU). METHODOLOGY/PRINCIPAL FINDINGS ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E) 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP)-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS) we identified novel recessive alleles for Fras1, Ift140 and Lig1. CONCLUSIONS/SIGNIFICANCE In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.This work was enabled by the Australian Phenomics Network and partly supported by funding from the Australian Government’s National Collaborative Research Infrastructure Strategy, a Strategic Grant from the Faculty of Medicine, Nursing and Health Sciences at Monash University, and the Victorian Government’s Operational Infrastructure Support Program. IS acknowledges support through the NH&MRC R. Douglas Wright and ARC Future Fellowship schemes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A risk-adjusted and anatomically stratified cohort comparison study of open surgery, endovascular techniques and medical management for juxtarenal aortic aneurysms-the UK COMPlex AneurySm Study (UK-COMPASS): a study protocol.

    Get PDF
    Funder: Health Technology Assessment Programme; Grant(s): Award ID: 15/153/02INTRODUCTION: In one-third of all abdominal aortic aneurysms (AAAs), the aneurysm neck is short (juxtarenal) or shows other adverse anatomical features rendering operations more complex, hazardous and expensive. Surgical options include open surgical repair and endovascular aneurysm repair (EVAR) techniques including fenestrated EVAR, EVAR with adjuncts (chimneys/endoanchors) and off-label standard EVAR. The aim of the UK COMPlex AneurySm Study (UK-COMPASS) is to answer the research question identified by the National Institute for Health Research Health Technology Assessment (NIHR HTA) Programme: 'What is the clinical and cost-effectiveness of strategies for the management of juxtarenal AAA, including fenestrated endovascular repair?' METHODS AND ANALYSIS: UK-COMPASS is a cohort study comparing clinical and cost-effectiveness of different strategies used to manage complex AAAs with stratification of physiological fitness and anatomical complexity, with statistical correction for baseline risk and indication biases. There are two data streams. First, a stream of routinely collected data from Hospital Episode Statistics and National Vascular Registry (NVR). Preoperative CT scans of all patients who underwent elective AAA repair in England between 1 November 2017 and 31 October 2019 are subjected to Corelab analysis to accurately identify and include every complex aneurysm treated. Second, a site-reported data stream regarding quality of life and treatment costs from prospectively recruited patients across England. Site recruitment also includes patients with complex aneurysms larger than 55 mm diameter in whom an operation is deferred (medical management). The primary outcome measure is perioperative all-cause mortality. Follow-up will be to a median of 5 years. ETHICS AND DISSEMINATION: The study has received full regulatory approvals from a Research Ethics Committee, the Confidentiality Advisory Group and the Health Research Authority. Data sharing agreements are in place with National Health Service Digital and the NVR. Dissemination will be via NIHR HTA reporting, peer-reviewed journals and conferences. TRIAL REGISTRATION NUMBER: ISRCTN85731188

    Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation

    Get PDF
    Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs). Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep) is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE) and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear β-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis

    A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3

    Get PDF
    Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors1, 2, 3, 4, 5, 6, 7, 8, 9. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications10, 11, 12, 13, 14, 15. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm−1 at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides
    corecore