21,085 research outputs found

    Integrated assurance assessment of a reconfigurable digital flight control system

    Get PDF
    The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety

    Herbig-Haro flows in L1641N

    Get PDF
    We have used the 2.56m Nordic Optical Telescope (NOT) to observe two deep fields in L1641N, selected on the basis of previous shock studies, using the 2.12 micron transition of H2 (and a Ks filter to sample the continuum) for a total exposure time of 4.6 h (72 min Ks) in the overlapping region. The resulting high-resolution mosaic shows numerous new shocks and resolves many known shocks into multiple components. Using previous observations taken 9 years earlier we calculate a proper motion map and combine this with Spitzer 24 micron observations of the embedded young stars. The combined H2 mosaic shows many new shocks and faint structures in the HH flows. From the proper motion map we find that most HH objects belong to two major bi-polar HH flows, the large-scale roughly North-South oriented flow from central L1641N and a previously unseen HH flow in eastern L1641N. Combining the tangential velocity map with the mid-IR Spitzer images, two very likely outflow sources are found. The outflow source of the eastern flow, L1641N-172, is found to be the currently brightest mid-IR source in L1641N and seem to have brightened considerably during the past 20 years. We make the first detection of this source in the near-IR (Ks) and also find a near-IR reflection nebula pointing at the source, probably the illuminated walls of a cone-shaped cavity cleared out by the eastern lobe of the outflow. Extending a line from the eastern outflow source along the proper motion vector we find that HH 301 and HH 302 (almost 1 pc away) belong to this new HH flow.Comment: 10 pages, 4 figures, Accepted for publication by A &

    Dynamical density functional theory for the evaporation of droplets of nanoparticle suspension

    Get PDF
    We develop a lattice gas model for the drying of droplets of a nanoparticle suspension on a planar surface, using dynamical density functional theory (DDFT) to describe the time evolution of the solvent and nanoparticle density profiles. The DDFT assumes a diffusive dynamics but does not include the advective hydrodynamics of the solvent, so the model is relevant to highly viscous or near to equilibrium systems. Nonetheless, we see an equivalent of the coffee-ring stain effect, but in the present model it occurs for thermodynamic rather the fluid-mechanical reasons. The model incorporates the effect of phase separation and vertical density variations within the droplet and the consequence of these on the nanoparticle deposition pattern on the surface. We show how to include the effect of slip or no-slip at the surface and how this is related to the receding contact angle. We also determine how the equilibrium contact angle depends on the microscopic interaction parameters.Comment: 35 pages, 10 figure

    The circumstellar environment of the YSO TMR-1 and a revisit to the candidate very low-mass object TMR-1C

    Full text link
    TMR-1 (IRAS~04361+2547) is a class~I proto-stellar source located in the nearby Taurus star-forming region. Its circumstellar environment is characterized by extended dust emission with complex structures and conspicuous filaments. A faint companion, called TMR-1C, located near the proto-star had been detected in previous studies, but its nature as a very young substellar object remained inconclusive. To improve the constraints on the nature of TMR-1C, and to investigate the process of very low-mass star formation in the TMR-1 system we use very sensitive infrared imaging observations as well as NIR spectroscopy. We construct the SED of TMR-1C over a much larger wavelength range as had been possible in previous work and compare it with models of extincted background stars, young sub-stellar objects, and very low-mass stars with circumstellar disk and envelope emission. We also search for additional low-luminosity objects in the immediate environment of the TMR-1, study the surrounding NIR dust morphology, and analyse the emission line spectrum of a filamentary structure in the physical context of a bow-shock model. We find that the observed SED of TMR-1C is inconsistent with an extincted background star, nor can be fitted with available models for a young extremely low-mass (<12M_Jup) object. Our near-IR spectrum indicates an effective temperature of at least ~3000K. Based on a good match of TMR-1C's SED with radiation transfer models of young stellar objects with circumstellar disks, we propose that TMR-1C is most likely a very low-mass star with M~0.1-0.2M_sun surrounded by a circumstellar disk with high inclination, i>80deg. Moreover, we detect an additional very faint source, which we call TMR-1D, and that shows a quite striking symmetry in position with TMR-1C. TMR-1C and TMR-1D may have been formed from a common triggered star-formation event, caused by... (abstract abridged)Comment: 15 pages, 11 figures, accepted for publication in A&

    Relaxation Processes in Clouds of Trapped Bosons above the Bose-Einstein Condensation Temperature

    Full text link
    We present a unified account of damping of low-lying collective modes and of relaxation of temperature anisotropies in a trapped Bose gas in the collisionless regime. By means of variational techniques, we show that the relaxation times for the two situations are closely related to the simplest variational estimate of the viscous relaxation time. We derive rather precise theoretical expressions for the characteristic relaxation times, and compare our results with experiment.Comment: 4 pages, revte

    Neutrino-Lasing in The Early Universe

    Full text link
    Recently, Madsen has argued that relativistic decays of massive neutrinos into lighter fermions and bosons may lead, via thermalization, to the formation of a Bose condensate. If correct, this could generate mixed hot and cold dark matter, with important consequences for structure formation. From a detailed study of such decays, we arrive at substantially different conclusions; for a wide range of masses and decay times, we find that stimulated emission of bosons dominates the decay. This phenomenon can best be described as a neutrino laser, pumped by the QCD phase transition. We discuss the implications for structure formation and the dark-matter problem.Comment: 7 pages, 3 figures included as uuencoded file, CITA/93/
    • 

    corecore