6,755 research outputs found

    Calculations of air-guided modes in photonic crystal fibers using the multipole method

    Full text link
    We demonstrate that a combination of multipole and Bloch methods is well suited for calculating the modes of air core photonic crystal fibers. This includes determining the reflective properties of the cladding, which is a prerequisite for the modal calculations. We demonstrate that in the presence of absorption, the modal losses can be substantially smaller than in the corresponding bulk medium. © 2001 Optical Society of America

    Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats.

    Get PDF
    BACKGROUND: Although prevalent in prokaryotes, horizontal gene transfer (HGT) is rarer in multicellular eukaryotes. Bdelloid rotifers are microscopic animals that contain a higher proportion of horizontally transferred, non-metazoan genes in their genomes than typical of animals. It has been hypothesized that bdelloids incorporate foreign DNA when they repair their chromosomes following double-strand breaks caused by desiccation. HGT might thereby contribute to species divergence and adaptation, as in prokaryotes. If so, we expect that species should differ in their complement of foreign genes, rather than sharing the same set of foreign genes inherited from a common ancestor. Furthermore, there should be more foreign genes in species that desiccate more frequently. We tested these hypotheses by surveying HGT in four congeneric species of bdelloids from different habitats: two from permanent aquatic habitats and two from temporary aquatic habitats that desiccate regularly. RESULTS: Transcriptomes of all four species contain many genes with a closer match to non-metazoan genes than to metazoan genes. Whole genome sequencing of one species confirmed the presence of these foreign genes in the genome. Nearly half of foreign genes are shared between all four species and an outgroup from another family, but many hundreds are unique to particular species, which indicates that HGT is ongoing. Using a dated phylogeny, we estimate an average of 12.8 gains versus 2.0 losses of foreign genes per million years. Consistent with the desiccation hypothesis, the level of HGT is higher in the species that experience regular desiccation events than those that do not. However, HGT still contributed hundreds of foreign genes to the species from permanently aquatic habitats. Foreign genes were mainly enzymes with various annotated functions that include catabolism of complex polysaccharides and stress responses. We found evidence of differential loss of ancestral foreign genes previously associated with desiccation protection in the two non-desiccating species. CONCLUSIONS: Nearly half of foreign genes were acquired before the divergence of bdelloid families over 60 Mya. Nonetheless, HGT is ongoing in bdelloids and has contributed to putative functional differences among species. Variation among our study species is consistent with the hypothesis that desiccating habitats promote HGT

    Magnetism and high magnetic-field-induced stability of alloy carbides in Fe-based materials.

    Get PDF
    Understanding the nature of the magnetic-field-induced precipitation behaviors represents a major step forward towards unravelling the real nature of interesting phenomena in Fe-based alloys and especially towards solving the key materials problem for the development of fusion energy. Experimental results indicate that the applied high magnetic field effectively promotes the precipitation of M23C6 carbides. We build an integrated method, which breaks through the limitations of zero temperature and zero external field, to concentrate on the dependence of the stability induced by the magnetic effect, excluding the thermal effect. We investigate the intimate relationship between the external field and the origins of various magnetics structural characteristics, which are derived from the interactions among the various Wyckoff sites of iron atoms, antiparallel spin of chromium and Fe-C bond distances. The high-magnetic-field-induced exchange coupling increases with the strength of the external field, which then causes an increase in the parallel magnetic moment. The stability of the alloy carbide M23C6 is more dependent on external field effects than thermal effects, whereas that of M2C, M3C and M7C3 is mainly determined by thermal effects

    Peripheral nerve injury increases contribution of L-type calcium channels to synaptic transmission in spinal lamina II: Role of α2δ-1 subunits

    Get PDF
    BACKGROUND: Following peripheral nerve chronic constriction injury, the accumulation of the α2δ-1 auxiliary subunit of voltage-gated Ca2+channels in primary afferent terminals contributes to the onset of neuropathic pain. Overexpression of α2δ-1 in Xenopus oocytes increases the opening properties of Cav1.2 L-type channels and allows Ca2+influx at physiological membrane potentials. We therefore posited that L-type channels play a role in neurotransmitter release in the superficial dorsal horn in the chronic constriction injury model of neuropathic pain. RESULTS: Whole-cell recording from lamina II neurons from rats, subject to sciatic chronic constriction injury, showed that the L-type Ca2+channel blocker, nitrendipine (2 µM) reduced the frequency of spontaneous excitatory postsynaptic currents. Nitrendipine had little or no effect on spontaneous excitatory postsynaptic current frequency in neurons from sham-operated animals. To determine whether α2δ-1 is involved in upregulating function of Cav1.2 L-type channels, we tested the effect of the α2δ-1 ligand, gabapentin (100 µM) on currents recorded from HEK293F cells expressing Cav1.2/β4/α2δ-1 channels and found a significant decrease in peak amplitude with no effect on control Cav1.2/β4/α2δ-3 expressing cells. In PC-12 cells, gabapentin also significantly reduced the endogenous dihydropyridine-sensitive calcium current. In lamina II, gabapentin reduced spontaneous excitatory postsynaptic current frequency in neurons from animals subject to chronic constriction injury but not in those from sham-operated animals. Intraperitoneal injection of 5 mg/kg nitrendipine increased paw withdrawal threshold in animals subject to chronic constriction injury. CONCLUSION: We suggest that L-type channels show an increased contribution to synaptic transmission in lamina II dorsal horn following peripheral nerve injury. The effect of gabapentin on Cav1.2 via α2δ-1 may contribute to its anti-allodynic action

    Designing optimal greenhouse gas observing networks that consider performance and cost

    Get PDF
    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH<sub>2</sub>FCF<sub>3</sub>, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks

    Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations

    Get PDF
    Micronutrient malnutrition afflicts over three billion peopleworldwide and the numbers are continuously increasing. Developing genetically micronutrientenriched cereals, which are the predominant source of human dietary, is essential to alleviate malnutrition worldwide. Wheat chromosome 6B derived from wild emmerwheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell] was previously reported to be a source for high Zn concentration in the grain. In the present study, recombinant chromosome substitution lines (RSLs), previously constructed for genetic and physical maps of Gpc-B1 (a 250-kb locus affecting grain protein concentration), were used to identify the effects of the Gpc-B1 locus on grain micronutrient concentrations. RSLs carrying the Gpc-B1 allele of T. dicoccoides accumulated on average 12% higher concentration of Zn, 18% higher concentration of Fe, 29% higher concentration of Mn and 38% higher concentration of protein in the grain as compared with RSLs carrying the allele from cultivated wheat (Triticum durum). Furthermore, the high grain Zn, Fe and Mn concentrations were consistently expressed in five different environments with an absence of genotype by environment interaction. The results obtained in the present study also confirmed the previously reported effect of the wild-type allele of Gpc-B1 on earlier senescence of flag leaves. We suggest that the Gpc-B1 locus is involved in more efficient remobilization of protein, zinc, iron and manganese from leaves to the grains, in addition to its effect on earlier senescence of the green tissues

    Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS

    Get PDF
    A momentum resolved resonant inelastic X-ray scattering (qRIXS) experimental station with continuously rotatable spectrometers and parallel detection is designed to operate at different beamlines at synchrotron and free electron laser (FEL) facilities. This endstation, currently located at the Advanced Light Source (ALS), has five emission ports on the experimental chamber for mounting the high-throughput modular soft X-ray spectrometers (MXS) [24]. Coupled to the rotation from the supporting hexapod, the scattered X-rays from 27.5° (forward scattering) to 152.5° (backward scattering) relative to the incident photon beam can be recorded, enabling the momentum-resolved RIXS spectroscopy. The components of this endstation are described in details, and the preliminary RIXS measurements on highly oriented pyrolytic graphite (HOPG) reveal the low energy vibronic excitations from the strong electron-phonon coupling at C K edge around σ* band. The grating upgrade option to enhance the performance at low photon energies is presented and the potential of this spectroscopy is discussed in summary

    Techniques for Arbuscular Mycorrhiza Inoculum Reduction

    Get PDF
    It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems. There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities. Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages. Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity. An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects. Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment

    Neutron studies of Na-ion battery materials

    Get PDF
    The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present

    Neutron studies of Na-ion battery materials

    Get PDF
    The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present
    corecore