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Peripheral nerve injury increases
contribution of L-type calcium channels
to synaptic transmission in spinal lamina II:
Role of a2d–1 subunits

Sascha RA Alles1,2, Esperanza Garcia1,2,
Sridhar Balasubramanyan3,4, Karen Jones1,2, John R Tyson1,2,
Twinkle Joy3,4, Terrance P Snutch1,2 and Peter A Smith3,4

Abstract

Background: Following peripheral nerve chronic constriction injury, the accumulation of the a2d–1 auxiliary subunit of

voltage-gated Ca2þ channels in primary afferent terminals contributes to the onset of neuropathic pain. Overexpression of

a2d–1 in Xenopus oocytes increases the opening properties of Cav1.2 L-type channels and allows Ca2þ influx at physiological

membrane potentials. We therefore posited that L-type channels play a role in neurotransmitter release in the superficial

dorsal horn in the chronic constriction injury model of neuropathic pain.

Results: Whole-cell recording from lamina II neurons from rats, subject to sciatic chronic constriction injury, showed that

the L-type Ca2þ channel blocker, nitrendipine (2 mM) reduced the frequency of spontaneous excitatory postsynaptic

currents. Nitrendipine had little or no effect on spontaneous excitatory postsynaptic current frequency in neurons from

sham-operated animals. To determine whether a2d–1 is involved in upregulating function of Cav1.2 L-type channels,

we tested the effect of the a2d–1 ligand, gabapentin (100 mM) on currents recorded from HEK293F cells expressing

Cav1.2/b4/a2d–1 channels and found a significant decrease in peak amplitude with no effect on control Cav1.2/b4/a2d–3
expressing cells. In PC-12 cells, gabapentin also significantly reduced the endogenous dihydropyridine-sensitive calcium

current. In lamina II, gabapentin reduced spontaneous excitatory postsynaptic current frequency in neurons from animals

subject to chronic constriction injury but not in those from sham-operated animals. Intraperitoneal injection of 5 mg/kg

nitrendipine increased paw withdrawal threshold in animals subject to chronic constriction injury.

Conclusion: We suggest that L-type channels show an increased contribution to synaptic transmission in lamina II dorsal horn

following peripheral nerve injury. The effect of gabapentin on Cav1.2 via a2d–1 may contribute to its anti-allodynic action.
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Introduction

The auxiliary alpha-2-delta (a2d) subunits of voltage-

gated Ca2þ channels control the trafficking, localization,

and biophysical properties of the pore-forming a1-sub-
units.1–3 The a2d–1 subunit also serves as the binding

partner of the gabapentinoid drugs, pregabalin (PGB),

and gabapentin (GBP),4,5 which are first-line treatments

in the management of neuropathic pain.6

In experimental animal models, allodynia and hyper-

algesia can be induced by chronic constriction injury
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(CCI) of the sciatic nerve.7,8 This leads to a decrease in
paw withdrawal threshold (PWT) to tactile stimulation by
von Frey filaments that correlates with increased excit-
ability and altered expression of ion channels in dorsal
root ganglia (DRG) neurons9–17 and with increased excit-
atory synaptic transmission in the superficial dorsal
horn.3,18–21 This latter process of “central sensitization”
is initiated in part by upregulation of expression of a2d–1
in primary afferent terminals22–27 and leads to increased
spontaneous neurotransmitter release.23

Recent experiments in Xenopus oocytes showed that
overexpression of a2d–1 influenced the properties of the
voltage sensors of co-expressed Cav1.2 L-type channels
such that Ca2þ influx occurs at physiological membrane
potentials.28 Since sensory neurons express dihydropyri-
dine sensitive, L-type channels,10,29 we wondered whether
the increase in a2d–1 expression produced by nerve injury
could lead to persistent Ca2þ influx in primary afferent
terminals. This in turn may contribute to an increase in
spontaneous transmitter release, which would be depen-
dent on the activity of L-type Ca2þ channels. To test this
possibility, we examined the effect of the L-type Ca2þ

channel blocker, nitrendipine on spontaneous transmitter
release in spinal lamina II of rats subject to sciatic CCI.
Nitrendipine was chosen by virtue of its especially high
affinity for its binding site in rat brain (Ki¼ 55 pM com-
pared to nifedipine Ki¼ 384 pM).30 In humans, nitrendi-
pine is three times more potent than nifedipine in
reducing peripheral vascular resistance, and arterial
blood pressure, and in increasing leg blood flow.31

To determine whether augmentation of L-type chan-
nel function is contingent on a2d–1, we applied GBP to
HEK293F cells expressing Cav1.2/a2d–1 and observed a
reduction in peak amplitude of calcium current. GBP
binds with high affinity to the a2d-1 and a2d-2 subunits
but not to a2d-3 subunits32 and failed to affect calcium
current in Cav1.2/a2d–3 expressing cells. We further con-
firmed these results on native L-type channels in PC-12
cells and observed that GBP reduced the peak amplitude
of the dihydropyridine-sensitive current.

We also found that intraperitoneal injection of 5mg/kg
nitrendipine increased PWT in animals subject to CCI.
Taken together, our findings suggest that L-type Cav 1.2
channels show an increased contribution to synaptic
transmission in lamina II dorsal horn following peripheral
nerve injury and that an effect of GBP on Cav1.2 via a2d–
1 may contribute to its anti-allodynic action.

Methods

Nerve injury surgery and assessment of
mechanical allodynia

All procedures were approved by the University of
Alberta Animal Welfare Committee in accordance with

Canadian Council on Animal Care (CCAC) guidelines.
Male Sprague–Dawley rats (19–23-day old) were subject
to CCI of the sciatic nerve using polyethylene cuffs8 as
described previously.18 Surgery was performed under
isoflurane anesthesia (5% induction and 2% mainte-
nance). For sham surgery, the sciatic nerve was exposed
but not manipulated. Ten to 14 days after surgery, ani-
mals were assessed for the presence of allodynia using
von Frey filaments as previously described.18 Animals
exhibiting a PWT <6 g were assumed to be expressing
allodynia, a sign of neuropathic pain.

Spinal cord slice preparation and electrophysiology

Rats were euthanized with an intraperitoneal injection of
urethane (1.5 g/kg). Following cessation of respiration
and loss of nociceptive reflexes (paw pinch with forceps),
the spinal cord was removed by laminectomy, and
300 mm transverse spinal cord slices prepared on a vibra-
tome as previously described.18,21 Whole-cell patch-
clamp recordings were made under infrared
differential-interference optics in neurons from slices
from CCI or sham-operated animals. Recordings were
made from lamina II (substantia gelatinosa) neurons ipsi-
lateral to the sciatic injury.21 Substantia gelatinosa was
identified by its translucent appearance in the slice. For
recording, slices were superfused at room temperature
(�22�C) with 95% O2–5% CO2 saturated aCSF which
contained (in mM): 127 NaCl, 2.5 KCl, 1.2 NaH2PO4,
26 NaHCO3, 1.3 MgSO4, 2.5 CaCl2, 25 D-glucose, pH
7.4. Recording pipettes had resistances of 5–10 MX
when filled with an internal solution containing (in
mM) 130 potassium gluconate, 1 MgCl2, 2 CaCl2,
10HEPES, 10 EGTA, 4 Mg-ATP, 0.3 Na-GTP, pH
7.2, 290–300 mOsm. Recordings were made using an
NPI SEC-05LX amplifier in discontinuous, single-
electrode voltage-clamp or current clamp mode. Data
were only collected from neurons that exhibited clear
overshooting action potentials >60 mV in amplitude.
Spontaneous excitatory postsynaptic currents (sEPSC)
were recorded at �70 mV. Mini Analysis Program
(Synaptosoft, Decatur, GA, USA) was used to distin-
guish sEPSC from baseline noise. All detected events
were then re-examined and visually accepted or rejected
based on visual examination. Acceptable events had a
sharp onset and exponential offset, a total duration of
<50 ms, and an amplitude at least double the base-
line noise.

EPSCs were evoked at 0.05 Hz using a teflon-coated
nichrome stimulating electrode (7620, A-M Systems,
Carlsborg, WA, USA) on the dorsal root or near the
dorsal root entry zone to activate primary afferent
fibers. The voltage-gated ion channel blocker QX-314
(5 mM) was included in the internal solution to prevent
action potential discharge while recording evoked EPSPs
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(eEPSCs) in the presence of 10 mM bicuculline and 1 mM
strychnine. Stimulus intensity for eEPSCs was between 2

and 40 V and the stimulus duration was 100 or 400 ms.
Measurements were made from six averaged responses.

Drugs and chemicals

All chemicals used in slice preparation and whole-cell

electrophysiology were from Sigma (St. Louis, MO,

USA), except GBP, which was from TCI America

(Portland OR, USA) and nitrendipine, which was from

Tocris Bioscience Minneapolis (MN, USA). For IP

injections, 18 mg of nitrendipine was dissolved in 1 ml

of dimethyl sulfoxide (DMSO). This was further diluted

by the addition of 5 ml of deionized water and the solu-

tion made up to 20 ml by the addition of 14 ml saline

(0.9% NaCl). This yielded a suspension of 0.9 mg/ml of

nitrendipine. Animals received IP injections of 5 mg/kg

nitrendipine. Control vehicle solution contained a mix-

ture of DMSO, water, and saline in the ratio 1:5:14.

Cell culture, transfection, and electrophysiology

PC12 cells (ATCC CRL-1721) were grown on Bovine

Collagen Type I-coated flasks in F-12K (Invitrogen

21127022) medium supplemented with 2.5% fetal

bovine serum (FBS, GIBCO 12483–020) and 15%

horse serum (Invitrogen 26050–088) at 37�C in a humid-

ified atmosphere with 5% CO2–95% air. Whole-cell elec-

trophysiological recordings were performed on cells

plated on Poly-L-Lysine-coated glass coverslips 48–54

h after seeding.
HEK293F (Invitrogen 11625–019) cells were main-

tained in Dulbecco’s Modified Eagle’s Medium

(Invitrogen 12800–017) supplemented with 10% FBS

and 1% non-essential amino acids (Invitrogen 11140).

Cells were plated on Poly-L-Lysine-coated glass cover-

slips and transfected after 24 h using TurboFect trans-

fection reagent (Fisher Cat R0531), following the

procedure recommended by the manufacturer.

Plasmids encoding rat Cav1.2 a1 subunit and ancillary

subunits b4, a2d1, or a2d3 were combined at equimolar

ratio and co-transfected with enhanced green fluorescent

protein (EGFP) as a reporter. A total of 1.1 mg or 1.6 mg
cDNA per 35 mm dish was used for the transfection mix

with a2d1 or a2d3, respectively. Current recordings were
performed 18–24 h after transfection.

Whole-cell patch-clamp recordings from PC12 or

HEK cells were obtained using a 200B Axopatch ampli-

fier and data were acquired with a Digidata 1332A

system (Molecular Devices, CA) controlled by

pCLAMP 9 software. Data were low-pass filtered at

2 kHz using the Bessel filter of the amplifier and sampled

at 10 kHz. Experiments were performed at room temper-

ature (20–22�C). Borosilicate glass (Sutter BF150–86-10)

patch pipettes were made with a horizontal puller P97

(Sutter Instrument Co) and polished with a microforge

(Narishige MF-900). Electrodes had a resistance of 2.8–

3.5 MX when filled with the following internal solution

(mM): 105 Cesium methanesulphonate (CH3CsO3S), 25

TEA-Cl, 10 HEPES, 11 EGTA, 1 CaCl2, 5 Mg-ATP, 3

Tris2-Phosphocreatine, 3 Na2-Phosphocreatine, and 0.4

Tris-GTP (pH 7.2; 290 mOsm). The composition of the

bathing external solution for recordings from cells

expressing channels associated with a2d1 ancillary sub-

unit was (in mM) 88 CsCl, 40 TEA-Cl, 10 HEPES, 10

Glucose, 1 MgCl2, and 5 BaCl2. Osmolality was adjusted

to 300 mOsm and pH at 7.4. Native macroscopic cur-

rents from PC12 cells and from recombinant Cav1.2 co-

transfected with a2d3 ancillary subunit were recorded

with an extracellular solution containing (in mM) 95

CsCl, 30 TEA-Cl, 10 HEPES, 10 Glucose, 1 MgCl2,

and 20 BaCl2 (300 mOsm; pH 7.4). S-(-)-Bay K8644

(Tocris 1546) stock solution was prepared in DMSO

and stored in aliquots at �20�C; 100 nM working solu-

tions were made fresh in external recording solution

(final concentration of vehicle was 0.025%).

x-Conotoxin GVIA and x-Agatoxin VIA (Alomone

Labs) were reconstituted in sterile PBS and stored at

�20�C; appropriate volume was added directly into

external solution to a final concentration of 1 mM and

200 nM, respectively. GBP (TCI Chemicals, Portland,

OH, USA) 100 mM stock solution was prepared in

nanopure H2O and diluted into external solution to a

final concentration of 100 mM. Perfusion rate was 1.2

mL/min. No corrections were made for liquid junc-

tion potentials.
To examine the effect of GBP on recombinant chan-

nels in HEK cells, barium currents were evoked by

120ms repetitive step depolarizations from �100 mV

to 0 mV (a2d1) or from �100 mV to þ10 mV (a2d3) at
0.1 Hz. Current amplitudes were divided by the average

value obtained during the perfusion with external con-

trol solution and the fraction of remaining (unblocked)

current (I/IControl) was plotted against time. The steady

state value of unblocked current after 3 min of

GBP perfusion is reported as fraction of inhibition

(IGBP/IControl). Current–voltage relationship for channels

expressing a2d1 subunit was studied with 180 ms pulses

from �60 mV to þ30 mV at 5 mV increments (Vh=

�100 mV). Fitting of peak current values obtained

with increasing depolarizations was performed using

the modified Boltzmann equation:

IBa=IBa;Max ¼ ½ðVm � ErÞ�=ð1þ exp½ðVm � V50Þ=k�Þ

where IBa is the peak current at test potential Vm, IBa,Max

is the maximum peak current observed, Er is the

Alles et al. 3



apparent reversal potential, V50 is the midpoint voltage

for activation, and k is the slope factor.
The effect of GBP on neuronal L-type currents was

studied by examining native barium currents from undif-

ferentiated PC12 cells, evoked by 200 ms voltage ramps

from �100 to þ100 mV applied every 10 s. Current

amplitude at the peak of the resultant IV curve was mea-

sured in the presence of x-Conotoxin GVIA and

x-Agatoxin VIA as control value, and compared to the

values obtained after the consecutive application of

S-(-)-Bay K8644 and GBP. Nitrendipine (1 mM) was

applied to demonstrate that GBP affects the

dihydropyridine-sensitive current component.

mRNA expression analysis using quantitative

real-time PCR

PC12 cell pellets were homogenized in the presence of

TRI-Reagent (Ambion) and total RNA isolated using

the MagMAXTM-96 for Microarrays preparation kit

(Life Technologies, AM1839). Total cDNA was synthe-

sized from total RNA using a high capacity cDNA

reverse transcription kit (Applied Biosystems,

4368814). Gene-specific qPCR reactions utilized the

KAPA Probe Fast Universal qPCR Kit (KK4702) and

TaqManTM probes from Life Technologies and

Integrated DNA Technologies (IDT). Quantitative

PCR reactions were performed on a Bio-Rad CFX

Real-Time Systems using cycling conditions of 95�C
for 3 min then 95�C for 15 s followed by 60�C for 45 s

for 40 cycles. Specific TaqManTM probes used in

this study: rCav1.1(Rn01490941_m1), rCav1.2

(Rn00709287_m1), rCav1.3(Rn00692157_m1), rCav2.1

(Rn00563825_m1), rCav2.2(Rn00595911_m1), rCav2.3

(Rn00494444_m1), rA2D1(Rn01442581_m1), rA2D2

(Rn00457825_m1), and rA2D3(Rn00598241_m1) from

Life Technologies, and Glyceraldehyde 3-phosphate

dehydrogenase (rGAPDH) (Rn.PT.56a.35727291)

from IDT.

Statistical analysis

The Kolmogorov–Smirnov two-sample test (K-S test)

was used to compare distributions of sEPSC amplitudes

and inter-event intervals.33 All other data were com-

pared using the two-tailed t-test or by one-way analysis

of variance (ANOVA) where appropriate. Significance

was attributed if p< 0.05. Mini Analysis program

(Synaptosoft, Decatur, GA, USA) was used to generate

cumulative probability plots. All other graphing and sta-

tistical analyses were performed using Origin (v8.6 or

2018, Origin Lab., Northampton, MA, USA).

Results

Nitrendipine reduces the frequency of lamina II

sEPSCs in animals subject to CCI

As already mentioned, peripheral nerve injury increases

the excitability of the superficial dorsal horn.3,18–21 To

assess the role of presynaptic L-type Ca2þ channels in

this process, we examined the effect of nitrendipine

(2 mM) on spontaneous excitatory postsynaptic currents

(sEPSCs) in lamina II neurons of rats subject to sciatic

CCI. Nitrendipine was highly effective in reducing fre-

quency (increasing inter-event interval, IEI) of sEPSCs

in rats subject to CCI (Figure 1(b); p < 0.001; K-S test:

Figure 1(d); p< 0.001; t-test). By contrast in sham-

operated rats, cumulative probability plots show that

nitrendipine was without effect on IEI (Figure 1(a);

p> 0.15; K-S test) of sEPSCs in lamina II neurons.

There was also no significant effect of nitrendipine on

average sEPSC IEI (Figure 1(c); p> 0.05; t-test).
Nitrendipine slightly decreased sEPSC amplitude in

sham-operated rats according to a cumulative probabil-

ity plot (Figure 1(e); p< 0.05;K-S test), but the averaged

amplitude was unaffected (Figure 1(g); p> 0.05; t-test).

Somewhat unexpectedly, nitrendipine produced a slight

increase in sEPSC amplitude in neurons from animals

subject to CCI and this was significant according to K-S

statistics (Figure 1(f); p< 0.02) and from consideration

of average event amplitude (Figure 1(h); p< 0.05; t-test).

Nitrendipine reduces the amplitude of lamina II

eEPSCs in animals subject to CCI

In neurons from sham-operated animals, superfusion of

nitrendipine (2 mM) caused a small reduction in the

amplitude of evoked EPSCs (eEPSCs) by an average of

14.85� 5.53% (n¼ 13, p< 0.05, paired t-test). This

reduction is in agreement with earlier reports on effect

of L-type channel blocker on evoked EPSCs in the

superficial dorsal horn neurons.34,35 By contrast, in

rats subject to CCI, nitrendipine caused a much larger

reduction of 40.23� 6.77% (n¼ 12, p< 0.005, paired

t-test) in the amplitude of eEPSCs. Sample traces are

illustrated in Figure 1(i) and (j). Figure 1(k) illustrates

the time course of the effect of nitrendipine on eEPSCs

in CCI and sham-operated rats. The time course of

action of nitrendipine varied from cell to cell. In general,

the effect took about 10–15 min to develop and the

washout time was 30 min or longer. Although we

cannot rule out the possibility that some of the recorded

events were polysynaptic, the eEPSCs observed under

the conditions of our experiments were of short duration

and monophasic and thus may have been predominantly

monosynaptic.
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Effects of nitrendipine on mechanical allodynia

Following CCI, animals expressing a PWT of <6 g were

defined as allodynic. PWT were measured 30 min after

an IP injection of 5 mg/kg nitredipine. Pharmacokinetic

studies of nitrendipine in rats are scarce but literature

suggests that plasma concentration peaks at 1.2 h follow-

ing intravenous, oral, or intraduodenal administration.36

The changes in PWT in response to a series of nitrendi-

pine injections are shown in Figure 2(a). Injections given

on day 1 increased PWT strongly in some animals and

weakly in others. On day 2, two injections of 5 mg/kg

were administered 60 min apart and PWT addressed 30
min after the second injection. On day 3, animals
received a single injection of nitrendipine and all five
animals responded with an increase in PWT. The pro-
gressive improvement in effect may reflect drug accumu-
lation following repeated injections. The elimination half
time in rats is 57 h.36 Data for each animal are shown in
Figure 2(b). Vehicle injections failed to affect PWT
of the ipsilateral limb (Figure 2(a)). The PWT for the
paw contralateral to CCI was >15 g and therefore
any non-specific effect of nitrendipine on could not
be determined.
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Figure 1. Effects of nitrendipine on sEPSC and eEPSCs recorded from lamina II neurons of CCI and sham-operated rats. Cumulative
probability plots for effect of nitrendipine on inter-event interval (IEI) of sEPSCs from sham-operated animals (a) and those subject to CCI
(b). (c and d) Same data replotted as mean IEI. Cumulative probability plots for effect of nitrendipine on amplitude of sEPSCs from sham-
operated animals (e) and those subject to CCI (f). (g and h) same data replotted as mean IEI. For shams, IEI data for 1629 events and
nitrendipine data for 1398 events in 24 neurons. For CCI, IEI data for 1853 events and nitrendipine data for 1379 events in 27 neurons. For
shams, amplitude data for 1561 events and nitrendipine data for 1415 events in 24 neurons. For CCI, amplitude data for 1898 events and
nitrendipine data for 1389 events in 27 neurons. Note that p values were derived from K-S test for cumulative probability graphs and
paired t-test for the bar graphs. **p< 0.001 and *p< 0.05 compared to pre-drug amplitude (paired t-test). In each case, recordings were
obtained from only one neuron per slice. Sample recordings of eEPSCs following DRZ stimulation from sham-operated animals (i) and
those subject to CCI (j), before, during, and after superfusion of 2 mM nitrendipine. (k) Time course of effect of nitendipine on eEPSC
amplitude in 13 neurons from sham-operated animals and 12 neurons form animals subject to CCI. Error bars¼ SEM. **p< 0.001 and
*p< 0.05 compared to pre-drug amplitude (paired t-test). CCI: chronic constriction injury; eEPSC: evoked excitatory postsynap-
tic currents.
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Effect of a2d–1 on properties of exogenous L-type
channel complexes in HEK cells

The above results suggest that L-type Ca2þ channels
contribute to neurotransmitter release in nerve injured
animals. Since Savalli et al. (2016) observed a potentia-
tion of specifically Cav1.2 L-type channel current follow-
ing a2d–1 overexpression in Xenopus oocytes, we tested
whether GBP (100 mM) has a direct effect on Cav1.2-
mediated currents in the presence of a2d–1. We used
HEK293 cells expressing Cav1.2/b4/a2d–1 and examined
peak amplitude of calcium current before and after acute
application of GBP (100 mM). Since GBP does not bind
to the a2d–3 subunit,31 we performed experiments on
HEK293 cells expressing Cav1.2/ b4/a2d–3 as a control.
GBP (100 mM) produced a significant reduction
(Figure 3(a, i), p< 0.05, ANOVA) of Cav1.2/ b4/a2d–1
peak calcium currents with no significant effect on the
peak amplitude on Cav1.2/ b4/a2d–3 currents (Figure 3
(a, ii), p> 0.05, ANOVA). This relative effect is summa-
rized in Figure 3(a, iii) showing the effect of GBP after a
3 min application. The average inhibition of peak calci-
um current by GBP in Cav1.2/ b4/a2d–1 cells was �25%
(p< 0.05, ANOVA) as shown by current traces in
Figure 3(b, ii). There were no significant effects of
GBP on voltage dependence of activation (p> 0.05,
ANOVA) as shown in Figure 3(b, i) by comparing the
values of fitted parameters corresponding to the contin-
uous lines obtained by the Boltzmann function before
(V50¼�12.73� 0.37 mV, k¼�5.23� 0.14) and after
(V50¼�14.53� 0.53 mV, k¼�5.55� 0.10) GBP
application.

Gabapentin reduces the native
dihydropyridine-sensitive current in PC-12 cells

To further confirm that GBP inhibits L-type channels,
we examined native L-type Ca2þcurrents expressed in
undifferentiated pheochromocytoma cells (PC-12 cells).
PC-12 cells have long been studied as a model system

of neuronal physiology and biochemistry and the effects
of pharmacological agents due to their similarity to sym-
pathetic neurons upon differentiation.37

Undifferentiated PC-12 cells mainly express N- and L-
type Ca2þ channels although studies have also reported
the presence of an x-Agatoxin-VIA-sensitive (P/Q-type)
component.38 In order to isolate the L-type current in
undifferentiated PC-12 cells, it was necessary to remove
both N-type and P/Q-type currents with x-Conotoxin
GVIA (1mM) and x-Agatoxin VIA (200 nM; Figure 4
(b)). Further, in order to obtain a large enough L-type
current from which to establish any effects of GBP, we
also applied the L-type agonist S-(S)-BayK8644
(100 nM) (Figure 4(b)). The resulting whole current rep-
resents a dihydropyridine-sensitive inward current as it
was blocked by nitrendipine (1 mM) (Figure 4(c)). GBP
(100 mM) significantly inhibited the peak amplitude of
this current by approximately 40% (Figure 4(c),
p< 0.05, ANOVA).

In order to confirm the expression of selected Ca2þ

channel complex proteins, we performed qRT-PCR on
RNA isolated from PC-12 cells. Figure 4(c) confirms the
endogenous expression of the Cav1.2 L-type channel
together with the Cav2.2 (N-type) and Cav2.1
(P/Q-type) channels. Figure 4(d) demonstrates that
PC-12 cells also express significant amounts of the
a2d–1, a2d–2, and a2d–3 proteins in support of the
data from HEK293F cells showing that GBP requires
the a2d–1 subunit in order to elicit an inhibitory effect
on L-type currents.

Gabapentin reduces sEPSC frequency in CCI
but not sham-operated rats

To test whether the effectiveness of nitrendipine after
CCI corresponds to increased expression of a2d–1 in
primary afferent neurons as reported in Luo et al.,24,25

we next examined the effect of the a2d–1 ligand GBP at a
clinically relevant concentration (100 mM).39 GBP did
not alter IEI in neurons from sham-operated animals
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Figure 2. Effects of nitrendipine on PWT in animals subject to CCI. (a) Averaged data from five animals, arrows labeled N indicate times
of IP injections of 5 mg/kg nitrendipine. Dashed line with gray symbols illustrates minimal effect of vehicle injections (two animals) (b) Data
from each animal at the 36 h time point to illustrate the variation in nitrendipine effectiveness. PWT: paw withdrawal threshold.
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(Figure 5(a) and (c); p> 0.05) but profoundly decreased

it in neurons from animals subject to CCI (Figure 5(b)

and (d); p< 0.0001). GBP produced a small but signifi-

cant reduction in the sEPSC amplitude in neurons from

sham-operated animals (Figure 5(e) and (g); p< 0.001),

but there was no significant effect on neurons from ani-

mals subject to CCI (Figure 5(f) and (h)). A comparison

of the effects of nitrendipine and GBP on sEPSCs in CCI

and sham-operated rats is shown in Table 1.

Discussion

We tested the hypothesis that the increased expression of

a2d–1 at nerve terminals5 after nerve injury5 alters the

(a)

(b)

Figure 3. Gabapentin block of L-type Cav1.2 channel currents expressed in HEK293F cells. (a) Time course of inhibitory effect of 100 mM
GBP on Ba2þ currents recorded from HEK cells expressing Cav1.2 channels in combination with either a2d–1 (i) or a2d–3 (ii) auxiliary
subunits. The averaged fraction of peak current amplitude is plotted against time. Cells were perfused with GBP during the periods
indicated by horizontal bars. Inserts correspond to representative macroscopic currents obtained before (black) and after (red) the
application of GBP. (iii) The fraction of inhibition after 3 min of drug application is shown as a bar graph. Number of cells examined are
indicated in brackets; the asterisk indicates a statistical significance p< 0.05. (b) Normalized current-voltage curves (i) obtained for the
recombinant Cav1.2 channel in the presence (red symbols) and in the absence (black symbols) of 100 mM GBP. The values of fitted
parameters corresponding to the continuous lines obtained by Boltzmann function fits are shown. Application of GBP produced an average
current inhibition of �25% with no significant changes in the voltage dependence parameters. Data are plotted as mean� SEM (n¼ 5 for
each data point). (ii) Typical traces from a representative cell show the effect of GBP on the I-V relationship with no apparent modification
of current kinetics.
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properties of L-type Cav1.2 channels such that influx of

Ca2þ occurs at physiological membrane potential.27 This

notion is supported by the observation that both GBP

and nitrendipine produced a substantial increase in the

IEI of sEPSCs in neurons from nerve injured animals

(Figure 1(b) and (d) and Figure 5(b) and (d), Table 1),

whereas in sham-operated animals, both nitrendipine

and GBP were without effect (Figure 1(a) and (c) and

Figure 5(a) and (c)). This is also supported by a recent

report that intrathecal administration of the L-type

blocker nifedipine reversed tactile allodynia in mice engi-

neered to overexpress a2d–1.40 It is also consistent with

our observation that nitrendipine exerted an antiallo-

dynic effect in nerve-injured animals (Figure 2).

(a)

(c)

(b)

Figure 4. Gabapentin inhibits a dihydropyridine-sensitive inward current in undifferentiated PC12 cells. a. Current-voltage relation of
barium currents were examined in the presence of 1 mM x-Conotoxin GVIA and 200nM x-Agatoxin VIA to eliminate the contribution of
native non-L-type channels. Currents were elicited by voltage ramps from �100 to +100mV at 1mV/ms, and cells were exposed to 100nM
of the agonist (S)-(-)-BayK 8644 prior to the application of 100 mM GBP. b. The bar graph shows the average of peak amplitude values
(n¼ 5) obtained in cells perfused with external recording solution (Ba2+ 20mM), compared to that obtained after the consecutive addition
of peptide toxins, BayK 8644 and GBP. Data are plotted as Mean � S.E.M. The asterisk indicates the change in current amplitude after
perfusion with GBP is statistically significant at p< 0.05. c. Endogenous expression of ancillary a2d subunits (Left) and HVA a1 subunits
(Right) in PC12 cells was quantified by RT-PCR. Expression levels were calculated relative to the “housekeeping gene” GAPDH
(Glyceraldehyde 3-phosphate dehydrogenase). Mean values � S.D. of three samples.
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Following CCI, nitrendipine acts predominantly pre-
synaptically in lamina II as effects on sEPSC amplitude
were small (Figures 1(f) and (h)), whereas those on
sEPSC frequency were highly significant (Figure 1(b)
and (d)). The observed slight increase in sEPSC ampli-
tude in animals subject to CCI was unexpected (Figure 1
(f) and (h)). One possibility is that there exists a weak
blockade of postsynaptic dendritic Kþ channels by
nitrendipine,41,42 and that a resulting increase in
space constant may increase the amplitude of events
recorded in the soma. It remains to be determined why
this effect was observed in animals subject to CCI

(Figure 1(f) and (h)) but not from sham-operated ani-

mals (Figure 1(e) and (g)).
Given the ubiquitous distribution of L-type Ca2þ

channels in the nervous system,43 it is possible that

some of the anti-allodynic actions of nitredipine are

exerted at thalamic or cortical levels or perhaps by

actions on descending pain control mechanisms.

We think this rather unlikely as no overt CNS effects

are observed in patients receiving nitrendipine for the

management of cardiovascular disorders.
Like nitrendipine, the effects of GBP were predomi-

nantly presynaptic as there was a large increase in IEI in

neurons from animals subject to CCI (Figure 5(b) and

(d)) but not in neurons from sham-operated animals

(Figure 5(a) and (c)). This agrees with literature showing

that a2d–1 upregulation occurs in primary afferent neu-

rons after CCI but not postsynaptically in the dorsal

horn.24,25 There is no obvious explanation for the obser-

vation that GBP reduces sEPSC amplitude in neurons

from sham-operated animals (Figure 5(e) and (g)) but

not in those subject to CCI (Figure 5(f) and (h)).
Generally, N-type Ca2þ channels play a predominant

role in neurotransmitter release from primary afferent

terminals.34,35,44 Thus, our observation that nitrendipine

increases the IEI of sEPSC and the amplitude of eEPSCs

after CCI is intriguing as it suggests that L-type channels

contribute to this process when nerves are injured and

a2d–1 is upregulated. This may be explicable in terms of

Figure 5. Effects of GBP on sEPSCs recorded from lamina II neurons of CCI and sham-operated rats. Cumulative probability plots for
effect of 100 mM GBP on (a) inter-event interval (IEI) of sEPSCs in sham-operated animal and (b) in animals subject to CCI. (c and d) same
data replotted as bar graphs. Cumulative probability plots for effect of 100 mM GBP on (e) amplitude of sEPSCs in sham-operated animal
and (f) in animals subject to CCI. (g and h) same data replotted as bar graphs. For sham-operated rats, control data for 515 events and GBP
data for 625 events in 7 neurons from 5 rats. For CCI ,control data for 886 events and GBP data for 721 events in 9 neurons from 8 rats. p-
values were derived from K-S test for cumulative probability graphs and paired t-test for the bar graphs. **p< 0.001 and *p< 0.05
compared to pre-drug amplitude (paired t-test). In each case, recordings were obtained from only one neuron per slice. sEPSC: spon-
taneous excitatory postsynaptic currents; CCI: chronic constriction injury.

Table 1. Comparison of effects of nitrendipine and gabapentin on
sEPSCs recorded from CCI and sham-operated rats.

NTR (2 mM) GBP (100 mM)

CCI sEPSC frequency # 62.23% # 52.8%

CCI sEPSC amplitude " 8.38% Not significant

Sham sEPSC frequency Not significant Not significant

Sham sEPSC amplitude Not significant # 13.4%

Note: L-type channel blockade using 2 mM NTR produces similar effects on

sEPSCs as a clinically relevant concentration (100 mM) of a2d–1 ligand GBP

suggesting that GBP may produce effects on sEPSCs by binding to a2d–1
associated with L-type channels. The effects of GBP are exclusively on

frequency in CCI rats suggesting that GBP acts presynaptically. GBP:

gabapentin; CCI: chronic constriction injury; sEPSCs: spontaneous excit-

atory postsynaptic currents; NTR: nitrendipine.
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the findings of Savalli et al. (2016) who showed that a2d–
1 upregulation alters voltage sensitivity of Cav1.2 chan-
nels. This may indicate that they are more likely to be
activated by presynaptic action potentials and is sup-
ported by the classical observation that in DRG neurons
N-type Ca2þ channels begin to activate around �20 mV
and with depolarization to approximately �10 mV being
required to open L-type channels.28 Such activation
would be more likely to participate in the release process
as a2d–1 indiscriminately recruits voltage gated Ca2þ

channels to release sites.45

Using both the HEK293F expression system and
PC-12 cells, we have shown that acute application of a
clinically relevant concentration of GBP produces a
robust inhibition of L-type currents. In HEK293F
cells, this depression is dependent on the co-expression
of a2d–1 (Figure 3(a), (i)) but is not observed when
a2d–3 is expressed (Figure 3(a), (ii)) as these subunits
do not bind GBP.31 In rats subject to peripheral nerve
injury, we have noted that GBP reduces the amplitude
and frequency of sEPSCs recorded in excitatory neu-
rons46 which receive input from C-fibers.47 GBP is less
effective at synapses onto inhibitory neurons which
receive input from both non-nociceptive Ab-fibers48 and
unmyelinated fibers.49 If the effects of GBP involve an
action on Cav1.2 L-type channels as a result of inhibition
of a2d–1 function, its lack of effect on input to inhibitory
neurons and preferential effect on excitatory neuronsmay
reflect the relative paucity of L-type Ca2þ channels on
large, non-nociceptive DRG neurons compared to
small, nociceptive DRG neurons.10,50 It should also be
noted that long-term application of GBP is more effective
in suppressing high-voltage activated ICa in small DRG
neurons compared to large neurons,39 suggesting that
a2d–1 may be preferentially expressed in nociceptive neu-
rons which, as mentioned above, predominate the excit-
atory synaptic input to excitatory neurons.

While cardiovascular actions of dihydropyridines
may limit their use in the treatment of neuropathic
pain, their use as adjunct agents has been suggested.51

There is also increasing interest in the possible use of
broad spectrum dihydropyridine-related Ca2þ channel
blockers such as M4 that inhibits Cav1.2 (L-type), Cav
2.2 (N-type), and the Cav 3.2 and 3.3 T-type channels.52
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