234 research outputs found

    Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair

    Get PDF
    Members of the galectin family of endogenous lectins are potent adhesion/growth-regulatory effectors. Their multi-functionality opens possibilities for their use in bioapplications. We studied whether human galectins induce the conversion of human dermal fibroblasts into myofibroblasts (MFBs) and the production of a bioactive extracellular matrix scaffold is suitable for cell culture. Testing a panel of galectins of all three subgroups, including natural and engineered variants, we detected activity for the proto-type galectin-1 and galectin-7, the chimera-type galectin-3 and the tandem-repeat-type galectin-4. The activity of galectin-1 required the integrity of the carbohydrate recognition domain. It was independent of the presence of TGF-beta 1, but it yielded an additive effect. The resulting MFBs, relevant, for example, for tumor progression, generated a matrix scaffold rich in fibronectin and galectin-1 that supported keratinocyte culture without feeder cells. Of note, keratinocytes cultured on this substratum presented a stem-like cell phenotype with small size and keratin-19 expression. In vivo in rats, galectin-1 had a positive effect on skin wound closure 21 days after surgery. In conclusion, we describe the differential potential of certain human galectins to induce the conversion of dermal fibroblasts into MFBs and the generation of a bioactive cell culture substratum. Copyright (C) 2011 S. Karger AG, Base

    NMR Studies of the C-Terminus of alpha4 Reveal Possible Mechanism of Its Interaction with MID1 and Protein Phosphatase 2A

    Get PDF
    Alpha4 is a regulatory subunit of the protein phosphatase family of enzymes and plays an essential role in regulating the catalytic subunit of PP2A (PP2Ac) within the rapamycin-sensitive signaling pathway. Alpha4 also interacts with MID1, a microtubule-associated ubiquitin E3 ligase that appears to regulate the function of PP2A. The C-terminal region of alpha4 plays a key role in the binding interaction of PP2Ac and MID1. Here we report on the solution structure of a 45-amino acid region derived from the C-terminus of alpha4 (alpha45) that binds tightly to MID1. In aqueous solution, alpha45 has properties of an intrinsically unstructured peptide although chemical shift index and dihedral angle estimation based on chemical shifts of backbone atoms indicate the presence of a transient α-helix. Alpha45 adopts a helix-turn-helix HEAT-like structure in 1% SDS micelles, which may mimic a negatively charged surface for which alpha45 could bind. Alpha45 binds tightly to the Bbox1 domain of MID1 in aqueous solution and adopts a structure consistent with the helix-turn-helix structure observed in 1% SDS. The structure of alpha45 reveals two distinct surfaces, one that can interact with a negatively charged surface, which is present on PP2A, and one that interacts with the Bbox1 domain of MID1

    Pre-Operative Risk Factors Predict Post-Operative Respiratory Failure after Liver Transplantation

    Get PDF
    OBJECTIVE: Post-operative pulmonary complications significantly affect patient survival rates, but there is still no conclusive evidence regarding the effect of post-operative respiratory failure after liver transplantation on patient prognosis. This study aimed to predict the risk factors for post-operative respiratory failure (PRF) after liver transplantation and the impact on short-term survival rates. DESIGN: The retrospective observational cohort study was conducted in a twelve-bed adult surgical intensive care unit in northern Taiwan. The medical records of 147 liver transplant patients were reviewed from September 2002 to July 2007. Sixty-two experienced post-operative respiratory failure while the remaining 85 patients did not. MEASUREMENTS AND MAIN RESULTS: Gender, age, etiology, disease history, pre-operative ventilator use, molecular adsorbent re-circulating system (MARS) use, source of organ transplantation, model for end-stage liver disease score (MELD) and Child-Turcotte-Pugh score calculated immediately before surgery were assessed for the two groups. The length of the intensive care unit stay, admission duration, and mortality within 30 days, 3 months, and 1 year were also evaluated. Using a logistic regression model, post-operative respiratory failure correlated with diabetes mellitus prior to liver transplantation, pre-operative impaired renal function, pre-operative ventilator use, pre-operative MARS use and deceased donor source of organ transplantation (p<0.05). Once liver transplant patients developed PRF, their length of ICU stay and admission duration were prolonged, significantly increasing their mortality and morbidity (p<0.001). CONCLUSIONS: The predictive pre-operative risk factors significantly influenced the occurrence of post-operative respiratory failure after liver transplantation

    Standard perioperative management in gastrointestinal surgery

    Get PDF

    Deontic Justice and Organizational Neuroscience

    Full text link

    All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Get PDF
    After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1  s and “long” ≳1  s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8

    Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run

    Get PDF
    We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between mA10141011m_{\rm A} \sim 10^{-14}-10^{-11} eV/c2c^2, which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. U(1)BU(1)_{\rm B} dark matter. For the cross-correlation method, the best median constraint on the squared coupling is 1.31×1047\sim1.31\times10^{-47} at mA4.2×1013m_{\rm A}\sim4.2\times10^{-13} eV/c2c^2; for the other analysis, the best constraint is 2.4×1047\sim 2.4\times 10^{-47} at mA5.7×1013m_{\rm A}\sim 5.7\times 10^{-13} eV/c2c^2. These limits improve upon those obtained in direct dark matter detection experiments by a factor of 100\sim100 for mA[24]×1013m_{\rm A}\sim [2-4]\times 10^{-13} eV/c2c^2, and are, in absolute terms, the most stringent constraint so far in a large mass range mAm_A\sim 2×10138×10122\times 10^{-13}-8\times 10^{-12} eV/c2c^2.Comment: 20 pages, 7 figure

    Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁵, which is the third best constraint for any young pulsar
    corecore