115 research outputs found

    Skylab-EREP studies in computer mapping of terrain in the Cripple Creek-Canon City area of Colorado

    Get PDF
    Multispectral-scanner data from satellites are used as input to computers for automatically mapping terrain classes of ground cover. Some major problems faced in this remote-sensing task include: (1) the effect of mixtures of classes and, primarily because of mixtures, the problem of what constitutes accurate control data, and (2) effects of the atmosphere on spectral responses. The fundamental principles of these problems are presented along with results of studies of them for a test site of Colorado, using LANDSAT-1 data

    Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary

    Get PDF
    Stable and radioactive carbon isotopic compositions of particle size fractions of a surface sediment from the Ems-Dollard estuary vary considerably with particle size. The organic material in the fine fractions (<20 µm) has considerably higher 14C values (14a~80%) than that in the coarse fractions (52%) and has higher δ13C values (average of -23‰ and -25.6‰, respectively). This shows that OM in the fine and the coarse fractions has different sources. The organic carbon in the fractions with particle sizes <20 µm is mainly imported from the North Sea. The contribution of material from the Ems river appears negligible. The carbon isotopic composition of the coarse fractions points to a terrestrial contribution. Discrete organic fragments are found of both terrestrial and marine/estuarine origin.

    Theology, News and Notes - Vol. 27, No. 03

    Get PDF
    Theology News & Notes was a theological journal published by Fuller Theological Seminary from 1954 through 2014.https://digitalcommons.fuller.edu/tnn/1197/thumbnail.jp

    Theology, News and Notes - Vol. 27, No. 03

    Get PDF
    Theology News & Notes was a theological journal published by Fuller Theological Seminary from 1954 through 2014.https://digitalcommons.fuller.edu/tnn/1072/thumbnail.jp

    Early Inception of the Laramide Orogeny in Southwestern Montana and Northern Wyoming: Implications for Models of Flat‐Slab Subduction

    Get PDF
    Timing and distribution of magmatism, deformation, exhumation, and basin development have been used to reconstruct the history of Laramide flat-slab subduction under North America during Late Cretaceous-early Cenozoic time. Existing geodynamic models, however, ignore a large (40,000-km(2)) sector of the Laramide foreland in southwestern Montana. The Montana Laramide ranges consist of Archean basement arches (fault-propagation folds) that were elevated by thrust and reverse faults. We present new thermochronological and geochronological data from six Laramide ranges in southwestern Montana (the Beartooth, Gravelly, Ruby and Madison Ranges, and the Tobacco Root and Highland Mountains) that show significant cooling and exhumation during the Early to mid-Cretaceous, much earlier than the record of Laramide exhumation in Wyoming. These data suggest that Laramide-style deformation-driven exhumation slightly predates the eastward sweep of magmatism in western Montana, consistent with geodynamic models involving initial strain propagation into North American cratonic rocks due to stresses associated with a northeastward expanding region of flat-slab subduction. Our results also indicate various degrees of Cenozoic heating and cooling possibly associated with westward rollback of the subducting Farallon slab, followed by Basin-and-Range extension. Plain Language Summary The Laramide region in the western U.S. is characterized by some of the highest topography in North America including the Wind River Range in WY and the Beartooth Range of WY and Montana. These ranges have fed detritus to surrounding basins for millions of years and contributed to modern ecosystems. These high topographic features and basins have significantly impacted paleoenvironmental conditions over geological time. The formation of these high-relief ranges has been linked to deep Earth, geodynamic, processes involving subduction of a flat slab under the North American Plate. Models of flat-slab subduction rely on the timing and pattern of deformation and exhumation of Laramide ranges, which remains poorly understood. Our study provides new data on the timing of deformation and exhumation of Laramide ranges in SW Montana and northern WY capable of testing current models of flat-slab subduction.NSF-Tectonics [EAR-1524151]6 month embargo; published online: 9 January 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Passive sampling and benchmarking to rank HOC levels in the aquatic environment

    Get PDF
    The identification and prioritisation of water bodies presenting elevated levels of anthropogenic chemicals is a key aspect of environmental monitoring programmes. Albeit this is challenging owing to geographical scales, choice of indicator aquatic species used for chemical monitoring, and inherent need for an understanding of contaminant fate and distribution in the environment. Here, we propose an innovative methodology for identifying and ranking water bodies according to their levels of hydrophobic organic contaminants (HOCs) in water. This is based on a unique passive sampling dataset acquired over a 10-year period with silicone rubber exposures in surface water bodies across Europe. We show with these data that, far from point sources of contamination, levels of hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) in water approach equilibrium with atmospheric concentrations near the air/water surface. This results in a relatively constant ratio of their concentrations in the water phase. This, in turn, allows us to (i) identify sites of contamination with either of the two chemicals when the HCB/PeCB ratio deviates from theory and (ii) define benchmark levels of other HOCs in surface water against those of HCB and/or PeCB. For two polychlorinated biphenyls (congener 28 and 52) used as model chemicals, differences in contamination levels between the more contaminated and pristine sites are wider than differences in HCB and PeCB concentrations endorsing the benchmarking procedure

    Placental transfer of the polybrominated diphenyl ethers BDE-47, BDE-99 and BDE-209 in a human placenta perfusion system: an experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants in consumer products. PBDEs may affect thyroid hormone homeostasis, which can result in irreversible damage of cognitive performance, motor skills and altered behaviour. Thus, in utero exposure is of very high concern due to critical windows in fetal development.</p> <p>Methods</p> <p>A human ex vivo placenta perfusion system was used to study the kinetics and extent of the placental transfer of BDE-47, BDE-99 and BDE-209 during four-hour perfusions. The PBDEs were added to the maternal circulation and monitored in the maternal and fetal compartments. In addition, the perfused cotyledon, the surrounding placental tissue as well as pre-perfusion placental tissue and umbilical cord plasma were also analysed. The PBDE analysis included Soxhlet extraction, clean-up by adsorption chromatography and GC-MS analysis.</p> <p>Results and Discussion</p> <p>Placental transfer of BDE-47 was faster and more extensive than for BDE-99. The fetal-maternal ratios (FM-ratio) after four hours of perfusion were 0.47 and 0.25 for BDE-47 and BDE-99, respectively, while the indicative permeability coefficient (IPC) measured after 60 minutes of perfusion was 0.26 h<sup>-1 </sup>and 0.10 h<sup>-1</sup>, respectively. The transport of BDE-209 seemed to be limited. These differences between the congeners may be related to the degree of bromination. Significant accumulation was observed for all congeners in the perfused cotyledon as well as in the surrounding placental tissue.</p> <p>Conclusion</p> <p>The transport of BDE-47 and BDE-99 indicates in utero exposure to these congeners. Although the transport of BDE-209 was limited, however, possible metabolic debromination may lead to products which are both more toxic and transportable. Our study demonstrates fetal exposure to PBDEs, which should be included in risk assessment of PBDE exposure of women of child-bearing age.</p

    Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

    Get PDF
    Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.Seventh Framework Programme (E.U
    corecore