202 research outputs found

    Biosafety of bee pollinators in genetically modified agro-ecosystems : current approach and further development in the EU

    Get PDF
    Bee pollinators are an important guild delivering a fundamental input to European agriculture due to the ecological service they provide to crops in addition to the direct economic revenues from apiculture. Bee populations are declining in Europe as a result of the effects of several environmental stressors, both natural and of anthropic origin. Efforts are ongoing in the European Union (EU) to improve monitoring and management of pollinator populations to arrest further declines. Genetically modified (GM) crops are currently cultivated in a limited area in Europe, and an environmental risk assessment (ERA) is required prior to their authorization for cultivation. The possible impacts of GM crops on pollinators are deemed relevant for the ERA. Existing ecotoxicological studies indicate that traits currently expressed in insect-resistant GM plants are unlikely to represent a risk for pollinators. However, new mechanisms of insect resistance are being introduced into GM plants, including novel combinations of Cry toxins and double strand RNA (dsRNA), and an ERA is required to consider lethal and sublethal effects of these new products on nontarget species, including insect pollinators. The evaluation of indirect effects linked to the changes in management practices (e.g. for herbicide-tolerant GM crops) is an important component of EU regulations and a requirement for ERA. This paper reviews current approaches used to test the sensitivity of pollinators to GM plants and their products to determine whether sufficient data are being provided on novel GM plants to satisfy EU risk assessment requirements

    Editorial: Advances and Challenges of RNAi Based Technologies for Plants—Volume 2

    Get PDF
    Editorial on the Research Topic: Advances and Challenges of RNAi Based Technologies for Plants—Volume

    Asian citrus psyllid RNAi pathway : RNAi evidence

    Get PDF
    Diaphorina citri, known as the Asian citrus psyllid, is an important pest of citrus because it transmits a phloem-limited bacteria strongly implicated in huanglongbing (citrus greening disease). Emerging biotechnologies, such as RNA interference, could provide a new sustainable and environmentally friendly strategy for the management of this pest. In this study, genome and functional analysis were performed to verify whether the RNAi core genes are present in the Asian psyllid genome and if the RNAi machinery could be exploited to develop a management strategy for this pest. Analyses of RNAi-related genes in the Asian citrus psyllid genome showed an absence of sequences encoding R2D2, a dsRNA-binding protein that functions as a cofactor of Dicer-2 in Drosophila. Nevertheless, bioassays using an in Planta System showed that the Asian citrus psyllid was very sensitive to ingested dsRNA, demonstrating a strong RNAi response. A small dose of dsRNA administered through a citrus flush was enough to trigger the RNAi mechanism, causing significant suppression of the targeted transcript, and increased psyllid mortality. This study provides evidence of a functional RNAi machinery, which could be further exploited to develop RNAi based management strategies for the control of the Asian citrus psyllid

    Biosafety of GM Crop Plants Expressing dsRNA:Data Requirements and EU Regulatory Considerations

    Get PDF
    The use of RNA interference (RNAi) enables the silencing of target genes in plants or plant-dwelling organisms, through the production of double stranded RNA (dsRNA) resulting in altered plant characteristics. Expression of properly synthesized dsRNAs in plants can lead to improved crop quality characteristics or exploit new mechanisms with activity against plant pests and pathogens. Genetically modified (GM) crops exhibiting resistance to viruses or insectsviaexpression of dsRNA have received authorization for cultivation outside Europe. Some products derived from RNAi plants have received a favourable opinion from the European Food Safety Authority (EFSA) for import and processing in the European Union (EU). The authorization process in the EU requires applicants to produce a risk assessment considering food/feed and environmental safety aspects of living organisms or their derived food and feed products. The present paper discusses the main aspects of the safety assessment (comparative assessment, molecular characterization, toxicological assessment, nutritional assessment, gene transfer, interaction with target and non-target organisms) for GM plants expressing dsRNA, according to the guidelines of EFSA. Food/feed safety assessment of products from RNAi plants is expected to be simplified, in the light of the consideration that no novel proteins are produced. Therefore, some of the data requirements for risk assessment do not apply to these cases, and the comparative compositional analysis becomes the main source of evidence for food/feed safety of RNAi plants. During environmental risk assessment, the analysis of dsRNA expression levels of the GM trait, and the data concerning the observable effects on non-target organisms (NTO) will provide the necessary evidence for ensuring safety of species exposed to RNAi plants. Bioinformatics may provide support to risk assessment by selecting target gene sequences with low similarity to the genome of NTOs possibly exposed to dsRNA. The analysis of these topics in risk assessment indicates that the science-based regulatory process in Europe is considered to be applicable to GM RNAi plants, therefore the evaluation of their safety can be effectively conducted without further modifications. Outcomes from the present paper offer suggestions for consideration in future updates of the EFSA Guidance documents on risk assessment of GM organisms

    Ferulic acid-4-O-sulfate rather than ferulic acid relaxes arteries and lowers blood pressure in mice

    Get PDF
    Consumption of foods rich in ferulic acid (FA) such as wholegrain cereals, or FA precursors such as chlorogenic acids in coffee, is inversely correlated with risk of cardiovascular disease and type 2 diabetes. As a result of digestion and phase II metabolism in the gut and liver, FA is converted predominantly into ferulic acid-4-O-sulfate (FA-sul), an abundant plasma metabolite. Although FA-sul may be the main metabolite, very little has been reported regarding its bioactivities. We have therefore compared the ex vivo vasorelaxing effect of FA and FA-sul (10−7 - 3.10−5 M) on isolated mouse arteries mounted in tissue myographs. FA-sul, but not FA, elicited a concentration-dependent vasorelaxation of saphenous and femoral arteries and aortae. The FA-sul mediated vasorelaxation was blunted by 1H- [1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble guanylate cyclase (sGC) inhibitor. The role of sGC was confirmed in femoral arteries isolated from sGCα1(−/−) knockout mice. Furthermore, 4-aminopyridine, a specific inhibitor of voltage-dependent potassium channels, significantly decreased FA-sul mediated effects. In anesthetized mice, intravenous injection of FA-sul decreased mean arterial pressure, whereas FA had no effect, confirming the results obtained ex vivo. FA-sul is probably one of the major metabolites accounting for the blood pressure-lowering effects associated with FA consumption

    Area-wide survey of thiamethoxam resistance and control failure likelihood in the rice stink bugs Oebalus poecilus and O. ypsilongriseus.

    Get PDF
    Insecticide resistance survey is an in-situ biomonitoring method to assess potential impact of pesticides that exhibit direct economic consequences when leading to control failure of insect pest species. Nonetheless, the latter phenomenon is frequently neglected. Their spatial dependence and mapping are also seldom considered and when complexes of related pest species are involved, such as the rice stink bugs from the Neotropics, Oebalus poecilus, and O. ypsilongriseus, the scenario is even worst. Insecticide use is common against both species, particularly with the neonicotinoid thiamethoxam, and despite suspicion of a shift in O. poecilus historical dominance and complaints of control failure, the role of this insecticide in this context was never tested. Thus, we screened populations from both species for thiamethoxam resistance within rice fields from central Brazil. The levels of thiamethoxam resistance and control failure likelihood were recorded and their spatial dependence was tested and geographically mapped. The thiamethoxam potency was similar between species, which also exhibited overlapping levels of resistance. Thus, this insecticide does not seem involved in eventual shifts in species dominance and the occurrence of O. ypsilongriseus is frequent. Thiamethoxam resistance was detected in both species, nearly half of the populations of O. poecilus and about a third of O. ypsilongriseus, but at low levels (<ten-fold). As a consequence, the risk of control failure with thiamethoxam was also low. Spatial dependence was significant for both species and phenomena (i.e., thiamethoxam resistance and control failure), prevailing in about the same area and likely reflecting the local pattern of insecticide use

    Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    Get PDF
    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Host Suitability of a Gregarious Parasitoid on Beetle Hosts: Flexibility between Fitness of Adult and Offspring

    Get PDF
    Behavioral tactics play a crucial role in the evolution of species and are likely to be found in host-parasitoid interactions where host quality may differ between host developmental stages. We investigated foraging decisions, parasitism and related fitness in a gregarious ectoparasitoid, Sclerodermus harmandi in relation to two distinct host developmental stages: larvae and pupae. Two colonies of parasitoids were reared on larvae of Monochamus alternatus and Saperda populnea (Cerambycidae: Lamiinae). Paired-choice and non-choice experiments were used to evaluate the preference and performance of S. harmandi on larvae and pupae of the two species. Foraging decisions and offspring fitness-related consequences of S. harmandi led to the selection of the most profitable host stage for parasitoid development. Adult females from the two colonies oviposited more quickly on pupae as compared to larvae of M. alternatus. Subsequently, their offspring development time was faster and they gained higher body weight on the pupal hosts. This study demonstrates optimal foraging of intraspecific détente that can occur during host-parasitoid interactions, of which the quality of the parasitism (highest fitness benefit and profitability) is related to the host developmental stage utilized. We conclude that S. harmandi is able to perfectly discriminate among host species or stages in a manner that maximizes its offspring fitness. The results indicated that foraging potential of adults may not be driven by its maternal effects, also induced flexibly with encountering prior host quality

    RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design

    Get PDF
    We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling
    • …
    corecore