110 research outputs found

    ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm

    Get PDF
    The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model system

    Return of non-ACMG recommended incidental genetic findings to pediatric patients: Considerations and opportunities from experiences in genomic sequencing

    Get PDF
    BACKGROUND: The uptake of exome/genome sequencing has introduced unexpected testing results (incidental findings) that have become a major challenge for both testing laboratories and providers. While the American College of Medical Genetics and Genomics has outlined guidelines for laboratory management of clinically actionable secondary findings, debate remains as to whether incidental findings should be returned to patients, especially those representing pediatric populations. METHODS: The Sequencing Analysis and Diagnostic Yield working group in the Clinical Sequencing Evidence-Generating Research Consortium has collected a cohort of pediatric patients found to harbor a genomic sequencing-identified non-ACMG-recommended incidental finding. The incidental variants were not thought to be associated with the indication for testing and were disclosed to patients and families. RESULTS: In total, 23 non-ACMG-recommended incidental findings were identified in 21 pediatric patients included in the study. These findings span four different research studies/laboratories and demonstrate differences in incidental finding return rate across study sites. We summarize specific cases to highlight core considerations that surround identification and return of incidental findings (uncertainty of disease onset, disease severity, age of onset, clinical actionability, and personal utility), and suggest that interpretation of incidental findings in pediatric patients can be difficult given evolving phenotypes. Furthermore, return of incidental findings can benefit patients and providers, but do present challenges. CONCLUSIONS: While there may be considerable benefit to return of incidental genetic findings, these findings can be burdensome to providers and present risk to patients. It is important that laboratories conducting genomic testing establish internal guidelines in anticipation of detection. Moreover, cross-laboratory guidelines may aid in reducing the potential for policy heterogeneity across laboratories as it relates to incidental finding detection and return. However, future discussion is required to determine whether cohesive guidelines or policy statements are warranted

    NAA10 polyadenylation signal variants cause syndromic microphthalmia

    Get PDF
    Background A single variant in NAA10 (c.471+2T>A), the gene encoding N-acetyltransferase 10, has been associated with Lenz microphthalmia syndrome. In this study, we aimed to identify causative variants in families with syndromic X-linked microphthalmia.Methods Three families, including 15 affected individuals with syndromic X-linked microphthalmia, underwent analyses including linkage analysis, exome sequencing and targeted gene sequencing. The consequences of two identified variants in NAA10 were evaluated using quantitative PCR and RNAseq.Results Genetic linkage analysis in family 1 supported a candidate region on Xq27-q28, which included NAA10. Exome sequencing identified a hemizygous NAA10 polyadenylation signal (PAS) variant, chrX:153,195,397T>C, c.*43A>G, which segregated with the disease. Targeted sequencing of affected males from families 2 and 3 identified distinct NAA10 PAS variants, chrX:g.153,195,401T>C, c.*39A>G and chrX:g.153,195,400T>C, c.*40A>G. All three variants were absent from gnomAD. Quantitative PCR and RNAseq showed reduced NAA10 mRNA levels and abnormal 3′ UTRs in affected individuals. Targeted sequencing of NAA10 in 376 additional affected individuals failed to identify variants in the PAS.Conclusion These data show that PAS variants are the most common variant type in NAA10-associated syndromic microphthalmia, suggesting reduced RNA is the molecular mechanism by which these alterations cause microphthalmia/anophthalmia. We reviewed recognised variants in PAS associated with Mendelian disorders and identified only 23 others, indicating that NAA10 harbours more than 10% of all known PAS variants. We hypothesise that PAS in other genes harbour unrecognised pathogenic variants associated with Mendelian disorders. The systematic interrogation of PAS could improve genetic testing yi

    DNM1 encephalopathy: A new disease of vesicle fission.

    Get PDF
    ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention

    A standardized, evidence-based protocol to assess clinical actionability of genetic disorders associated with genomic variation

    Get PDF
    Genome and exome sequencing can identify variants unrelated to the primary goal of sequencing. Detecting pathogenic variants associated with an increased risk of a medical disorder enables clinical interventions to improve future health outcomes in patients and their at-risk relatives. The Clinical Genome Resource, or ClinGen, aims to assess clinical actionability of genes and associated disorders as part of a larger effort to build a central resource of information regarding the clinical relevance of genomic variation for use in precision medicine and research

    Targeted 'Next-Generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M.</p> <p>Methods</p> <p>We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing.</p> <p>Results</p> <p>We verified three mutations - c.542delC in S<it>OX2</it>, resulting in p.Pro181Argfs*22, p.Glu105X in <it>OTX2 </it>and p.Cys240X in <it>FOXE3</it>. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in <it>CRYBA4</it>, p.Val201Met in <it>FOXE3 </it>and p.Asp291Asn in <it>VSX2</it>. Our analysis methodology gave one false positive result comprising a mutation in <it>PAX6 </it>(c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in <it>SOX2</it>.</p> <p>Conclusions</p> <p>Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.</p

    Further clinical and molecular delineation of the 15q24 microdeletion syndrome

    Get PDF
    Background Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. Aim To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. Methods Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. Results Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. Conclusion The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screenin

    Phenotypic expansion in DDX3X - a common cause of intellectual disability in females

    Get PDF
    De novo variants in DDX3X account for 1-3% of unexplained intellectual disability (ID) cases and are amongst the most common causes of ID especially in females. Forty-seven patients (44 females, 3 males) have been described. We identified 31 additional individuals carrying 29 unique DDX3X variants, including 30 postnatal individuals with complex clinical presentations of developmental delay or ID, and one fetus with abnormal ultrasound findings. Rare or novel phenotypes observed include respiratory problems, congenital heart disease, skeletal muscle mitochondrial DNA depletion, and late-onset neurologic decline. Our findings expand the spectrum of DNA variants and phenotypes associated with DDX3X disorders

    De Novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations

    Get PDF
    Purpose: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of superenhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. Methods: An international collaboration, exome sequencing, molecular modeling, yeast twohybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. Results: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the Drosophila ZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. Conclusion: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability

    The phenotype of floating-harbor syndrome:clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background\ud Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.\ud \ud Methods and results\ud Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.\ud \ud Conclusions\ud This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.The authors would like to thank the families for their cooperation and permission to publish these findings. SdM would like to thank Barto Otten. Funding was provided by the Government of Canada through Genome Canada, the Canadian Institutes of Health Research (CIHR) and the Ontario Genomics Institute (OGI-049), by Genome Québec and Genome British Columbia, and the Manton Center for Orphan Disease Research at Children’s Hospital Boston. KMB is supported by a Clinical Investigatorship Award from the CIHR Institute of Genetics. AD is supported by NIH grant K23HD073351. BBAdV and HGB were financially supported by the AnEUploidy project (LSHG-CT-2006-37627). This work was selected for study by the FORGE Canada Steering Committee, which consists of K. Boycott (University of Ottawa), J. Friedman (University of British Columbia), J. Michaud (University of Montreal), F. Bernier (University of Calgary), M. Brudno (University of Toronto), B. Fernandez (Memorial University), B. Knoppers (McGill University), M. Samuels (Université de Montréal), and S. Scherer (University of Toronto). We thank the Galliera Genetic Bank - “Telethon Genetic Biobank Network” supported by Italian Telethon grants (project no. GTB07001) for providing us with specimens
    corecore