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Abstract

De novo variants in DDX3X account for 1–3% of unexplained intellectual dis-

ability (ID) cases and are amongst the most common causes of ID especially in

females. Forty-seven patients (44 females, 3 males) have been described. We

identified 31 additional individuals carrying 29 unique DDX3X variants, includ-

ing 30 postnatal individuals with complex clinical presentations of developmen-

tal delay or ID, and one fetus with abnormal ultrasound findings. Rare or novel

phenotypes observed include respiratory problems, congenital heart disease,

skeletal muscle mitochondrial DNA depletion, and late-onset neurologic

decline. Our findings expand the spectrum of DNA variants and phenotypes

associated with DDX3X disorders.
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Introduction

Intellectual disability (ID) affects 1–3% of the popula-

tion and is more prevalent in males versus females.1

Although over 100 genes on the X chromosome were

found to be associated with ID in males,2,3 relatively

less is known about X-linked ID genes in females.4

Whole-exome sequencing (WES) is finding de novo

variants in X-linked ID genes in females of all ages.5–8

However, limited information is available regarding

such cases. Some of the genes causing ID in females

are known to cause disease in males, including PHF6,9

NEXMIF,8 and USP9X, with the latter causing congen-

ital malformations not observed in affected males.10

Further evidence for gender-specific variant pathogenic-

ity comes from DDX3X located on Xp11.4, with

pathogenic de novo variants causing syndromic ID in

39 females; in the same study, three males inherited

DDX3X variants from apparently unaffected mothers.11

Differences in predicted variant severity or X-chromo-

some inactivation studies from blood DNA did not

explain the gender-specific disease expression. Five

additional females with DDX3X variants have been

described in the literature.12–14 These reports led us to

hypothesize that females with de novo variation in

DDX3X may show additional clinical phenotypes. We

report 31 individuals with DDX3X-related disorders,

and provide comprehensive clinical presentations for

13, including expanding the age range of molecular

diagnosis with the oldest reported individual and a

fetus. These data expand the number of DDX3X

pathogenic variants and their associated phenotypic

spectrum.

Methods

Variants in DDX3X were identified by WES, performed

according to previously described methods,5,6,13 either on

a clinical basis at Baylor Genetics (Females 1–24, Males

1–2, Fetus 1) or on a research basis by the Baylor Hop-

kins Center for Mendelian Genomics (BHCMG, Females

25–27) or through the Centre de G�en�etique Humaine,

Universit�e de Franche-Comt�e (Female 28). Deidentified

reporting of aggregated demographic and molecular data

for all clinically referred cases was approved by the Insti-

tutional Review Board at Baylor College of Medicine

(BCM). Additional, informed consent for publication of

clinical details was obtained for a subset of clinically

referred cases and all research-based cases according to

IRB-approved protocols: at Baylor College of Medicine

(Female 8, 14, 17, 23, 24, 26), through the Undiagnosed

Diseases Network (UDN) protocol (Female 13), and

through the BHCMG (Females 7, 19, 25, 27); and at Cen-

tre de G�en�etique Humaine, Universit�e de Franche-Comt�e

(Female 28). Females 7 and 19 were previously reported

in a study of research-based reanalysis of clinical WES

data.13 DDX3X variants were annotated using transcript

NM_001193416. Variant pathogenicity was determined

based on the ACMG guidelines15 and the internal guideli-

nes developed at Baylor Genetics (https://www.baylorgene

tics.com/variant-classification/). For the interpretation of

de novo variants, the PS2 evidence is used if rare and/or

private variants in the proband were detected in both par-

ents by WES (Trio WES) or Sanger sequencing (proband

only WES). Otherwise the PM6 evidence is used. 0.1–
1 lg total RNA from patient fibroblast cells was extracted

for library preparation with TruSeq Stranded mRNA kit

1278 ª 2018 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.
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and was sequenced by Illumina NextSeq 550. Genes with

expression at the top/bottom 5% were used for pathway

enrichment analysis by Ingenuity Pathway Analysis (IPA,

QIAGEN Inc., https://www.qiagenbioinformatics.com/pro

ducts/ingenuity-pathway-analysis).

Results

Among 4839 (2152 females, 2687 males) patients referred

to the Baylor Genetics laboratory for clinical WES with

developmental delay (DD) and/or ID, 26 postnatal indi-

viduals (24 females, 2 males) were found to carry patho-

genic or likely pathogenic variants in DDX3X, and 1

female fetus was found to carry a de novo variant of

unknown significance in DDX3X. Through collaboration

with the BHCMG and Centre de G�en�etique Humaine,

Universit�e de Franche-Comt�e, an additional four unre-

lated female cases (Females 25–28) were identified. The

ages at molecular diagnosis of the postnatal individuals

ranged from 1 to 47 years (Table S1). Twenty-nine

unique variants were identified (26 novel and 3 reported

previously), including 13 missense, 6 frameshift, 3 splice

site, 4 nonsense, and 3 in-frame deletion/duplication

changes (Table 1 and Fig. 1A and B). In 29 individuals

with available parents (27 female, 1 male, 1 fetus), the

DDX3X variants were confirmed as de novo, supporting

the variant pathogenicity. Two de novo variants,

c.573_575del (p.I191del) and c.1805G>A (p.R602Q) are

mosaic in the proband, with allele fractions of 21% and

14%, respectively (Table 1). The most frequent clinical

presentations in the 28 females include DD and/or ID

(28/28), hypotonia (19/28), dysmorphic features (19/28),

structural brain abnormalities (18/20 who had brain MRI,

Fig. S1), movement disorders (17/28), visual impairments

(9/28), and microcephaly (7/28) (Table 2). The most

commonly observed dysmorphic facial features include a

high-arched palate (5/19), thin upper lip (5/19), large ears

(5/19), and long/smooth/large philtrum (4/19). Clinical

presentations that are not present in published studies

include respiratory problems (5/28): obstructive sleep

apnea, tachypnea, and chronic respiratory failure, as well

as congenital heart disease (5/7 who had

Figure 1. Location of DDX3X variants identified in this study, Female individuals (25, 26, 27) ascertained through the BHCMG, and muscle

biopsy results in Female 17 showing abnormal mitochondrial morphology. (A) Schematic view of the DDX3X exon–intron structure based on

NM_001193416. Blue boxes represent exons and yellow fields represent introns. Exon number is listed below each exon. cDNA change is listed

for each variant. (B) Schematic view of the DDX3X protein structure based on Snijders Blok et al.11 Amino acid change is listed for each variant.

(C) Pedigree and Sanger tracings demonstrate de novo inheritance in three unrelated female probands. (D) Female 25 demonstrated synophrys, a

broad nasal root with upturned nostrils, a long philtrum, and thin upper lip. Female 27 demonstrated cupped ears, a long philtrum, and a thin

upper lip. (E–G) Muscle biopsy results in Female 17 (E) Skeletal muscle cross-section showing mild variation in fiber size (H&E; magnification

9400). (F) Skeletal muscle cross-section showing few fibers with mild subsarcolemmal increase in oxidative activity [cytochrome oxidase (long

arrow) and NADH tetrazolium reductase (inset – arrow heads; magnifications 9400)]. (G) Electron microscopic images showing mild

subsarcolemmal mitochondrial proliferation (long arrow) with inset in the upper corner showing pleomorphic abnormally elongated and irregularly

shaped mitochondria (arrow heads). Variant color in (A) and (B): black, first reported in this study; purple, previously reported. The c.1304T>C

(p.L435P) variant from Fetus 1 was not listed in (A) and (B).

Table 2. Comparison of clinical presentations in this study and in the published cohort.

Clinical features Number of subjects in this study Percentage in this study Percentage in the published cohort

DD and/or ID 28/28 100% 100%

Hypotonia 19/28 68% 76%

Dysmorphic features 19/28 68% NA

Structural brain abnormalities 18/20 90% 81%

Movement disorders 17/28 61% 45%

Visual impairments 9/28 32% 34%

Microcephaly 7/28 25% 32%

Autism spectrum disorders

and other behavior problems*

6/28 21% 53%

Respiratory problems 5/28 18% NA

Congenital heart disease 5/7 71% NA

Skin abnormalities* 5/28 18% 37%

NA, not specified or reported in the published study.10

*In comparison to published data, autism spectrum disorder and other behavior problems and skin abnormalities are underrepresented in our

cohort: 6/28 versus 20/38 (P = 5.2 9 10�3) and 5/28 versus 14/38 (P = 4.6 9 10�2), respectively. One-tailed Z score test for two population pro-

portions is used.
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echocardiogram): atrial/ventricular septal defect, double

orifice mitral valve with small patent ductus arteriosus,

mild concentric left ventricular hypertrophy and bicuspid

aortic valve. In comparison to published data, autism

spectrum disorder and other behavior problems and skin

abnormalities are underrepresented in our cohort

(Table 2). For 13 subjects, we obtained additional

informed consent and provide detailed clinical descrip-

tions (Table S1), as well as clinical images for two sub-

jects (Fig. 1D).

In two subjects undergoing muscle biopsy, skeletal mus-

cle mitochondrial DNA content was reduced. The first

subject (Female 17) is a 6-year-old nondysmorphic girl

with a history of neonatal hypotonia, esophageal reflux,

and global developmental delay. A quadriceps muscle

biopsy demonstrated mild fiber type variation and abnor-

mal pleomorphic mitochondria on electron microscopy

(Fig. 1E–G). After correction for the reduced citrate syn-

thase activity, respiratory chain enzyme activity analysis

demonstrated reductions of multiple complexes, with rela-

tive sparing of complex II activity. Sequencing of mito-

chondrial DNA from the muscle sample did not detect any

known or likely pathogenic variants. Mitochondrial DNA

content in muscle was 39% of age-matched control mus-

cle. Clinical WES demonstrated a de novo heterozygous

c.453_454del (p.S152 fs) pathogenic variant in DDX3X,

with no other variants in known disease-associated genes

that explain the patient’s clinical presentations. The second

subject is a 47-year-old woman (Female 13) with history

of global developmental delay, intellectual disability, short

stature, dysmorphic features, microcephaly, and unilateral

renal agenesis. She learned to sit at two years of age and

walk at eight, and she only learned to say simple words. In

her early 40 sec, she regressed, becoming nonverbal and

unable to ambulate or to use her arms. She was found to

carry a de novo heterozygous c.1600C>T (p.R534C) patho-

genic variant in DDX3X (Table 1). The same variant was

also observed in Female 14 in our cohort, and a variant

involving the same codon (p.R534H) has been reported in

a patient with ID.11 A quadriceps muscle biopsy demon-

strated severe mitochondrial and lipid depletion, and

reduction in mitochondrial size similar to Female 17.

Mitochondrial DNA content in muscle was 26% of the

mean value for age- and tissue-matched controls. A reduc-

tion in all mitochondrial respiratory chain complex activi-

ties was observed. However, the reduction do not meet

diagnostic criteria after correction for the low citrate syn-

thase activity.

Discussion

Normal RNA metabolism requires the function of RNA

helicases (RH), and yet, the exact function of most

human RH remains unknown. There are six superfamilies

of RH known with more than 50 human members in

superfamily two that are characterized by a DExH and

DExD signature in their Walker B motifs, thus termed

DHX and DDX proteins. Genetic studies have begun to

address the role of altered RH function in human disease

(e.g., DHX37 and DHX30).16,17 DDX3X encodes a DEAD-

box RNA helicase important in transcription, splicing,

RNA transport, and translation.18,19 In a diagnostic labo-

ratory referral cohort of 4839 subjects with DD and/or

ID, we have identified 26 postnatal individuals (24

females, 2 males) with syndromic ID or DD carrying

pathogenic or likely pathogenic variants in DDX3X, and

one fetus with abnormal ultrasound findings carrying a de

novo variant of unknown significance in DDX3X; an addi-

tional four females were identified through research WES

at BHCMG. The overall frequency of pathogenic or likely

pathogenic DDX3X variations in our diagnostic labora-

tory referral cohort is 0.54% of the total (26/4839) and

1.12% of females (24/2152), similar to a previous report

(0.6% and 1.5% respectively),10 confirming mutations in

DDX3X are one of the most common genetic causes of

unexplained ID in females. In our diagnostic laboratory,

DDX3X ranks third among approximately 450 genes for

the occurrence of de novo variants, with ARID1B first (43

individuals) and ANKRD11 sec (29 individuals).

In addition to confirming and extending published

mutational data, our phenotypic analyses expand the

phenotypic spectrum associated with DDX3X variants in

females. For instance, we found respiratory problems

and congenital heart disease in 5/28 and 5/7 of our

subjects, phenotypes not previously described in the

original description of DDX3X related disorders,11

although observed in a subsequent report of two

females.12 We found no evidence for genotype–pheno-
type correlations between the mutations we identified

and age at onset or phenotypic severity. Previously

reported individuals ranged in ages from 1 to 33 years.

We report the phenotype of a 47-year-old woman

(Female 13) who had manifestations consistent with

DDX3X disorder and a clinical picture of previously

unreported late-onset neurologic decline. The decline is

unrelated to intercurrent illness, and her motor func-

tion is at least in part responsive to physical therapy.

Of note, other X-linked DD/ID loci, exemplified by

female FMR1 premutation [MIM: 300623] and MECP2

duplication carriers,20 are notable for late adult onset

neurological or neurocognitive phenotypes.

Two variants reported in this study, c.1600C>T
(p.R534C) and c.1703C>T (p.P568L), and three previ-

ously reported, c.641T>C (p.I214T), c.931C>T (p.R311*),
and c.1084C>T (p.R362C),11 have also been observed to

occur somatically in association with medulloblastoma,
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malignant melanoma, and esophageal squamous cell car-

cinoma (http://cancer.sanger.ac.uk/cosmic). Malignancy

has not been reported in the 31 patients included in this

study. However, pathway analysis for the highest 5% and

lowest 5% genes expressed in RNAseq data from dermal

fibroblasts obtained in one subject (Female 13) showed

enrichment in cell cycle control of chromosomal replica-

tion and double-strand break repair pathways (Table S2).

Future studies will elucidate whether individuals carrying

DDX3X variants are at risk for the development of malig-

nancies.21 In summary, we identified 31 unrelated patients

with causal variants in DDX3X and expanded the geno-

typic and phenotypic spectrum of DDX3X-related disor-

ders. The collective data suggest that DDX3X defects are a

frequent cause of syndromic ID in females, and the causal

variants are likely to be loss-of-function (ExAC database

showed pLI = 1.00 for DDX3X).22
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in the Supporting Information section at the end of the
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Figure S1. Brain MRI images of subjects with DDX3X

variants.

Table S1. Clinical features and DDX3X variants in sub-

jects enrolled in this study. Detailed clinical features are

only reported for the subjects in whom we were able to

obtain additional informed consent.

Table S2. RNAseq pathway analysis for Female 13.

Table S3. Members of the Undiagnosed Diseases Net-

work.
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