109 research outputs found

    Radiometric Calibration of the Earth Observing System's Imaging Sensors

    Get PDF
    The work on the grant was mainly directed towards developing new, accurate, redundant methods for the in-flight, absolute radiometric calibration of satellite multispectral imaging systems and refining the accuracy of methods already in use. Initially the work was in preparation for the calibration of MODIS and HIRIS (before the development of that sensor was canceled), with the realization it would be applicable to most imaging multi- or hyper-spectral sensors provided their spatial or spectral resolutions were not too coarse. The work on the grant involved three different ground-based, in-flight calibration methods reflectance-based radiance-based and diffuse-to-global irradiance ratio used with the reflectance-based method. This continuing research had the dual advantage of: (1) developing several independent methods to create the redundancy that is essential for the identification and hopefully the elimination of systematic errors; and (2) refining the measurement techniques and algorithms that can be used not only for improving calibration accuracy but also for the reverse process of retrieving ground reflectances from calibrated remote-sensing data. The grant also provided the support necessary for us to embark on other projects such as the ratioing radiometer approach to on-board calibration (this has been further developed by SBRS as the 'solar diffuser stability monitor' and is incorporated into the most important on-board calibration system for MODIS)- another example of the work, which was a spin-off from the grant funding, was a study of solar diffuser materials. Journal citations, titles and abstracts of publications authored by faculty, staff, and students are also attached

    SeaWiFS Calibration and Algorithm Validation

    Get PDF
    This is the fourth annual report on NASA grant NAGW 3543, titled 'Sea-viewing Wide Field of view Sensor (SeaWiFS) calibration and algorithm validation'. An extended field experiment was conducted at Lake Tahoe in late July 1996 that involved: experimental verification of radiative transfer computations for various viewing geometries; retrieval of an effective aerosol optical depth height; calibration of a large field of view (FOV) sensor; and an evaluation of spatial non-uniformities in surface reflectance. The investigation and development of novel methods for the calibration of field radiometers at a variety of signal levels has been continued during the past year

    SeaWiFS calibration and algorithm validation

    Get PDF
    A substantial amount of field research has been completed during this period (1 October 1994 - 31 October 1995). The applicability of different in-flight calibration methods was studied. In addition, various field instruments and new equipment were tested to appraise their usefulness during such calibration activities. The purposes and (expected) results of these field experiments are detailed in separate sections of this report. One section contains a synopsis of calibrations conducted over both land and water targets. A second section contains the results of an experiment conducted to determine the spatial uniformity of surface reflectance at Lake Tahoe, the chosen water calibration site. Advances were also made in the area of radiative transfer software development. An existing exact radiative transfer code, Successive Orders (SO), was modified to provide outputs of the radiance distribution at arbitrary altitudes above a selected calibration target. These modifications were needed to utilize the SO software in radiance-based sensor calibrations. Serious thought was given to the general applicability of various calibration techniques to calibrations conducted over water surfaces. In particular, the practicality of the radiance-based and reflectance-based methods of in-flight radiometric calibration was evaluated

    In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    Get PDF
    A reflectance-based method was used to provide an analysis of the in-flight radiometric performance of AVIRIS. Field spectral reflectance measurements of the surface and extinction measurements of the atmosphere using solar radiation were used as input to atmospheric radiative transfer calculations. Five separate codes were used in the analysis. Four include multiple scattering, and the computed radiances from these for flight conditions were in good agreement. Code-generated radiances were compared with AVIRIS-predicted radiances based on two laboratory calibrations (pre- and post-season of flight) for a uniform highly reflecting natural dry lake target. For one spectrometer (C), the pre- and post-season calibration factors were found to give identical results, and to be in agreement with the atmospheric models that include multiple scattering. This positive result validates the field and laboratory calibration technique. Results for the other spectrometers (A, B and D) were widely at variance with the models no matter which calibration factors were used. Potential causes of these discrepancies are discussed

    Revealing their true stripes: Mg/Ca banding in the Paleogene planktonic foraminifera genus Morozovella and implications for paleothermometry

    Get PDF
    The Mg/Ca ratio of foraminiferal calcite is a widely used empirical proxy for ocean temperature. Foraminiferal Mg/Ca-temperature relationships are based on extant species and are species-specific, introducing uncertainty when applying them to the fossil tests of extinct groups. Many modern species show remarkable heterogeneity in their intra-test Mg distributions, typically due to the presence of high Mg bands, which have a biological origin. Importantly, banding patterns differ between species, which could affect Mg/Ca-temperature relationships. Few studies have looked at intra-test variability in Mg/Ca ratios in extinct species of foraminifera, despite the obvious implications for paleothermometry. We used electron probe microanalysis (EPMA) to investigate intra-test Mg distributions in the fossil tests of two species of planktonic foraminifera from the extinct muricate mixed-layer-dwelling genus Morozovella, commonly used in Paleogene sea surface temperature reconstructions. Both M. aragonensis and M. crater show striking Mg banding patterns with multiple high and low Mg/Ca band pairs throughout the test wall in all chambers. The intra-test Mg variability in M. aragonensis and M. crater is similar to that in modern species widely used in paleoclimate reconstructions and banding patterns are consistent with published growth models for modern forms, albeit with subtle differences. The presence of Mg bands supports the application of Mg/Ca-palaeothermometry in extinct Morozovella species as well as the utility of EPMA for examining preservation of foraminifera tests in paleoclimatological studies. However, we emphasize the importance of rigorous assessments of inter- and intra-test Mg variability when using microanalytical techniques for foraminiferal Mg/Ca paleothermometry

    Franck-Condon-Broadened Angle-Resolved Photoemission Spectra Predicted in LaMnO3

    Full text link
    The sudden photohole of least energy created in the photoemission process is a vibrationally excited state of a small polaron. Therefore the photoemission spectrum in LaMnO3 is predicted to have multiple Franck-Condon vibrational sidebands. This generates an intrinsic line broadening approximately 0.5 eV. The photoemission spectral function has two peaks whose central energies disperse with band width approximately 1.2 eV. Signatures of these phenomena are predicted to appear in angle-resolved photoemission spectra.Comment: Revtex file 4 pages and 3 figure

    Amplification ratio control system for copy number variation genotyping

    Get PDF
    We describe a generic design for ratiometric analysis suitable for determination of copy number variation (CNV) class of a gene. Following two initial sequence-specific PCR priming cycles, both ends of both amplicons (one test and one reference) in a duplex reaction, are all primed by the same universal primer (UP). Following each amplification denaturation step, the UP target and its reverse complement (UPâ€Č) in each strand form a hairpin. The bases immediately beyond the 3â€Č-end of the UP and 5â€Č of UPâ€Č are chosen such as not to base pair in the hairpin (otherwise priming is ablated). This hairpin creates a single constant environment for priming events and chaperones free 3â€Č-ends of amplicon strands. The resultant ‘amplification ratio control system’ (ARCS) permits ratiometric representation of amplicons relative to the original template into PCR plateau phase. These advantages circumvent the need for real-time PCR for quantitation. Choice of different %(G+C) content for the target and reference amplicons allows liquid phase thermal melt discrimination and quantitation of amplicons. The design is generic, simple to set up and economical. Comparisons with real-time PCR and other techniques are made and CNV assays demonstrated for haptoglobin duplicon and ‘chemokine (C-C motif) ligand 3-like 1’ gene

    Disparities in the analysis of morphological disparity

    Get PDF
    Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no ‘one-size-fits-all’ approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    The multi-peak adaptive landscape of crocodylomorph body size evolution

    Get PDF
    Background: Little is known about the long-term patterns of body size evolution in Crocodylomorpha, the > 200-million-year-old group that includes living crocodylians and their extinct relatives. Extant crocodylians are mostly large-bodied (3–7 m) predators. However, extinct crocodylomorphs exhibit a wider range of phenotypes, and many of the earliest taxa were much smaller ( Results: Crocodylomorphs reached an early peak in body size disparity during the Late Jurassic, and underwent an essentially continual decline since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e., Cope’s rule), or strong correlations of body size with climate. Instead, the intermediate to large body sizes of some crocodylomorphs are better explained by group-specific adaptations. In particular, the evolution of a more aquatic lifestyle (especially marine) correlates with increases in average body size, though not without exceptions. Conclusions: Shifts between macroevolutionary regimes provide a better explanation of crocodylomorph body size evolution on large phylogenetic and temporal scales, suggesting a central role for lineage-specific adaptations rather than climatic forcing. Shifts leading to larger body sizes occurred in most aquatic and semi-aquatic groups. This, combined with extinctions of groups occupying smaller body size regimes (particularly during the Late Cretaceous and Cenozoic), gave rise to the upward-shifted body size distribution of extant crocodylomorphs compared to their smaller-bodied terrestrial ancestors.</p
    • 

    corecore