33 research outputs found

    User Needs Assessment of Information Seeking Activities of MIT Students - Spring 2006

    Get PDF
    The SFX/Verde Group was authorized to complete a user needs assessment in the form of a Photo Diary Study with MIT students in the spring of 2006. The goal of the study was to inform the MIT Libraries of online tool improvements that should be implemented to meet our most pressing user needs. Sixteen graduate students and sixteen undergraduate students participated in offering a fascinating glimpse into the information-seeking aspects of their academic lives. The team categorized user behaviors into goals and tasks and then analyzed the 277 goals and tasks and the 507 methods shared with us by the students in the study. The study yielded the following priorities for the Libraries' online tools: Make discovery easier and more effective. Incorporate trusted networks in finding tools. Continue to put links to the Libraries' services and resources where the users are. The study also showed that the students used a variety of highly successful strategies for performing quick lookups of information and finding specific known items. Finally, while the assessment focused on aspects of the students' work related to online tools, it also yielded rich information that could be useful in improving other aspects of the Libraries' services

    Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression

    Get PDF
    Background: Caligid copepods, also called sea lice, are fish ectoparasites, some species of which cause significant problems in the mariculture of salmon, where the annual cost of infection is in excess of €300 million globally. At present, caligid control on farms is mainly achieved using medicinal treatments. However, the continued use of a restricted number of medicine actives potentially favours the development of drug resistance. Here, we report transcriptional changes in a laboratory strain of the caligid Lepeophtheirus salmonis (Krøyer, 1837) that is moderately (~7-fold) resistant to the avermectin compound emamectin benzoate (EMB), a component of the anti-salmon louse agent SLICE® (Merck Animal Health).Results: Suppression subtractive hybridisation (SSH) was used to enrich transcripts differentially expressed between EMB-resistant (PT) and drug-susceptible (S) laboratory strains of L. salmonis. SSH libraries were subjected to 454 sequencing. Further L. salmonis transcript sequences were available as expressed sequence tags (EST) from GenBank. Contiguous sequences were generated from both SSH and EST sequences and annotated. Transcriptional responses in PT and S salmon lice were investigated using custom 15 K oligonucleotide microarrays designed using the above sequence resources. In the absence of EMB exposure, 359 targets differed in transcript abundance between the two strains, these genes being enriched for functions such as calcium ion binding, chitin metabolism and muscle structure. γ-aminobutyric acid (GABA)-gated chloride channel (GABA-Cl) and neuronal acetylcholine receptor (nAChR) subunits showed significantly lower transcript levels in PT lice compared to S lice. Using RT-qPCR, the decrease in mRNA levels was estimated at ~1.4-fold for GABA-Cl and ~2.8-fold for nAChR. Salmon lice from the PT strain showed few transcriptional responses following acute exposure (1 or 3 h) to 200 μg L-1 of EMB, a drug concentration tolerated by PT lice, but toxic for S lice.Conclusions: Avermectins are believed to exert their toxicity to invertebrates through interaction with glutamate-gated and GABA-gated chloride channels. Further potential drug targets include other Cys-loop ion channels such as nAChR. The present study demonstrates decreased transcript abundances of GABA-Cl and nAChR subunits in EMB-resistant salmon lice, suggesting their involvement in avermectin toxicity in caligids

    Phylodynamic analysis of an emergent Mycobacterium bovis outbreak in an area with no previously known wildlife infections

    Get PDF
    1. Understanding how an emergent pathogen successfully establishes itself and persists in a previously unaffected population is a crucial problem in disease ecology, with important implications for disease management. In multi-host pathogen systems this problem is particularly difficult, as the importance of each host species to transmission is often poorly characterised, and the disease epidemiology is complex. Opportunities to observe and analyse such emergent scenarios are few. 2. Here, we exploit a unique dataset combining densely-collected data on the epidemiological and evolutionary characteristics of an outbreak of Mycobacterium bovis (the causative agent of bovine tuberculosis, bTB) in a population of cattle and badgers in an area considered low-risk for bTB, with no previous record of either persistent infection in cattle, or of any infection in wildlife. We analyse the outbreak dynamics using a combination of mathematical modelling, Bayesian evolutionary analyses, and machine learning. 3. Comparison to M. bovis whole-genome sequences from Northern Ireland confirmed this to be a single introduction of the pathogen from the latter region, with evolutionary analysis supporting an introduction directly into the local cattle population six years prior to its first discovery in badgers. 4. Once introduced, the evidence supports M. bovis epidemiological dynamics passing through two phases, the first dominated by cattle-to-cattle transmission before becoming established in the local badger population. 5. Synthesis and applications. The raw data object of this analysis were used to support decisions regarding the control of a M. bovis emergent outbreak, of considerable concern because of the geographical distance from previously known high-risk areas. Our further analyses, estimating the time of introduction (and therefore the likely magnitude of any hidden outbreak) and the rates of cross-species transmission, provided valuable confirmation that the extent and focus of the imposed controls were appropriate. Not only these findings strengthen the call for genomic surveillance, but they also pave the path for future outbreaks control, providing insights for more rapid and decisive evidence-based decision-making. As the methods we used and developed are agnostic to the disease itself, they are also valuable for other slowly transmitting pathogens

    Evidence for local and international spread of Mycobacterium avium subspecies paratuberculosis through whole genome sequencing of isolates from the island of Ireland

    Get PDF
    Publication history: Accepted - 1 April 2022; Published online - 5 April 2022We describe application of whole genome sequencing (WGS) to a collection of 197 Mycobacterium avium subsp paratuberculosis (MAP) isolates gathered from 122 cattle herds across 27 counties of the island of Ireland. We compare WGS to MAP diversity quantified using mycobacterial interspersed random unit – variable number tandem repeats (MIRU-VNTR). While MIRU-VNTR showed only two major types, WGS could split the 197 isolates into eight major groups. We also found six isolates corresponding to INMV 13, a novel MIRU-VNTR type for Ireland. Evidence for dispersal of MAP across Ireland via cattle movement could be discerned from the data, with mixed infections present in several herds. Furthermore, comparisons of MAP WGS data from Ireland to data from Great Britain and continental Europe revealed many instances of close genetic similarity and hence evidence for international transmission of infection. BEAST MASCOT structured coalescent analyses, with relaxed and strict molecular clocks, estimated the substitution rate to be 0.10–0.13 SNPs/site/year and disclosed greater transitions per lineage per year from Europe to Ireland, indicating transmission into Ireland. Our work therefore reveals new insight into the seeding of MAP infection across Ireland, highlighting how WGS can inform policy formulation to ultimately control MAP transmission at local, national and international scales.We acknowledge funding from the Department of Agriculture, Food and Marine awards 15/S/651 (‘NexusMAP’) and 2019R404 (’BTBGe- nIE’)

    Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis) using RAD sequencing

    Get PDF
    The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758) and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP) marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq) was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study's observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies

    Genomic prediction for tuberculosis resistance in dairy cattle

    Get PDF
    The increasing prevalence of bovine tuberculosis (bTB) in the UK and the limitations of the currently available diagnostic and control methods require the development of complementary approaches to assist in the sustainable control of the disease. One potential approach is the identification of animals that are genetically more resistant to bTB, to enable breeding of animals with enhanced resistance. This paper focuses on prediction of resistance to bTB. We explore estimation of direct genomic estimated breeding values (DGVs) for bTB resistance in UK dairy cattle, using dense SNP chip data, and test these genomic predictions for situations when disease phenotypes are not available on selection candidates.We estimated DGVs using genomic best linear unbiased prediction methodology, and assessed their predictive accuracies with a cross validation procedure and receiver operator characteristic (ROC) curves. Furthermore, these results were compared with theoretical expectations for prediction accuracy and area-under-the-ROC-curve (AUC). The dataset comprised 1151 Holstein-Friesian cows (bTB cases or controls). All individuals (592 cases and 559 controls) were genotyped for 727,252 loci (Illumina Bead Chip). The estimated observed heritability of bTB resistance was 0.23±0.06 (0.34 on the liability scale) and five-fold cross validation, replicated six times, provided a prediction accuracy of 0.33 (95% C.I.: 0.26, 0.40). ROC curves, and the resulting AUC, gave a probability of 0.58, averaged across six replicates, of correctly classifying cows as diseased or as healthy based on SNP chip genotype alone using these data.These results provide a first step in the investigation of the potential feasibility of genomic selection for bTB resistance using SNP data. Specifically, they demonstrate that genomic selection is possible, even in populations with no pedigree data and on animals lacking bTB phenotypes. However, a larger training population will be required to improve prediction accuracies

    A simulation model to investigate interactions between first season grazing calves and Ostertagia ostertagi

    Get PDF
    AbstractA dynamic, deterministic model was developed to investigate the consequences of parasitism with Ostertagia ostertagi, the most prevalent and economically important gastrointestinal parasite of cattle in temperate regions. Interactions between host and parasite were considered to predict the level of parasitism and performance of an infected calf. Key model inputs included calf intrinsic growth rate, feed quality and mode and level of infection. The effects of these varied inputs were simulated on a daily basis for key parasitological (worm burden, total egg output and faecal egg count) and performance outputs (feed intake and bodyweight) over a 6 month grazing period. Data from published literature were used to parameterise the model and its sensitivity was tested for uncertain parameters by a Latin hypercube sensitivity design. For the latter each parameter tested was subject to a 20% coefficient of variation. The model parasitological outputs were most sensitive to the immune rate parameters that affected overall worm burdens. The model predicted the expected larger worm burdens along with disproportionately greater body weight losses with increasing daily infection levels. The model was validated against published literature using graphical and statistical comparisons. Its predictions were quantitatively consistent with the parasitological outputs of published experiments in which calves were subjected to different infection levels. The consequences of model weaknesses are discussed and point towards model improvements. Future work should focus on developing a stochastic model to account for calf variation in performance and immune response; this will ultimately be used to test the effectiveness of different parasite control strategies in naturally infected calf populations

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A meta-analysis for bovine tuberculosis resistance in dairy cattle

    Get PDF
    Now that the Higgs particle has been observed by the ATLAS and CMS experiments at the LHC, the next endeavor would be to probe its fundamental properties and to measure its couplings to fermions and gauge bosons with the highest possible accuracy. However, the measurements will be limited by significant theoretical uncertainties that affect the production cross section in the main production channels as well as by experimental systematical errors. Following earlier work, we propose in this paper to consider ratios of Higgs production cross sections times decay branching ratios in which most of the theoretical uncertainties and some systematical errors, such as the ones due to the luminosity measurement and the Higgs decay branching fractions, cancel out. The couplings of the Higgs particle could be then probed in a way that will be mostly limited by the statistical accuracy achievable at the LHC and accuracies at the percent level are foreseen for some of the ratios at the end of the LHC run. At the theoretical level, these ratios are also interesting as they do not involve the ambiguities that affect the Higgs total decay width in new physics scenarios. To illustrate how these ratios can be used to determine the Higgs couplings, we perform a rough analysis of the recent ATLAS and CMS data which shows that there is presently no significant deviation from the Standard Model expectation
    corecore