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ABSTRACT: Bovine tuberculosis (bTB) has been among 
the most persistent diseases in cattle.  Genetic selection of 
disease resistant individuals may be a complementary 
approach to assist with disease control. The aim of this 
study was to conduct a meta-analysis on two dairy cattle 
populations with bTB phenotypes and SNP chip 
genotypes, identifying genomic regions underlying bTB 
resistance and testing genomic predictions by means of 
cross-validation. We identified a region on chromosome 6 
likely to be associated with bTB resistance and confirmed 
that this chromosome as a whole contributes a major 
proportion of the observed variation in dataset. Genomic 
prediction for bTB was shown to be feasible even when 
different populations are combined, with the chromosome 
heritability results suggesting that the accuracy arises from 
the SNPs capturing linkage disequilibrium between 
markers and QTL as well as additive relationships between 
animals. Further studies on larger populations will be 
needed to confirm findings.  
Keywords: Regional Heritability; Cross Validation; 
Genomic Selection; Disease Resistance; Bovine 
Tuberculosis 
 

Introduction 
 

In many countries bovine tuberculosis (bTB) is 
still persistent in livestock despite on-going eradication 
programmes. bTB control has relied on diagnosis through 
the tuberculin skin test and abattoir carcass inspection (de 
la Rua-Domenech et al. (2006)). The limitations, however, 
in sensitivity of these methods, along with our incomplete 
understanding of bTB transmission, impede successful 
eradication. Genetic selection of individuals resistant to 
bTB may offer a complementary strategy for the control of 
tuberculosis in cattle. 

Previous studies have shown genetic variation 
underlying resistance to bTB (Brotherstone et al. (2010); 
Bermingham et al. (2012, 2014); Finlay et al. (2012)). Our 
hypothesis is that a meta-analysis combining populations 
may reveal new information concerning the genetic 
architecture of bTB resistance, by means of simultaneous 
analysis of individuals distantly related, assisted by a 
larger sample size. Specifically, we anticipate that meta-
analyses will provide additional information on specific 
loci affecting resistance and it will enable enhanced 
genomic predictions of resistance.   

Regional heritability (RH) mapping (Nagamine et 
al. (2012)) is a flexible means of identifying genomic 
regions affecting complex traits, particularly when 
individual SNPs contribute only a small proportion of 
genetic variation, but groups of SNPs may collectively be 

significantly associated with the trait. RH mapping can 
also be an effective means of combining disparate datasets 
(Riggio et al. (2014a)), avoiding the need to assume the 
same linkage phase between markers and mutations across 
populations. Combining datasets in this way also allows 
testing of genomic predictions within and across 
populations, using cross-validation (CV) methods (Luan et 
al. 2009). Further, chromosome-level heritabilities also 
give insight into properties of the genomic heritability 
(Riggio et al. (2014b)). The aim of this study was to 
investigate the genomic control of bTB resistance and to 
explore the feasibility of genomic selection for bTB 
resistance. This was done by combining two independent 
bTB resistance datasets and analysing this joint dataset.   
 

Materials and Methods 
 

Animals and phenotypes. Two datasets were 
used: dataset 1 comprised 1151 female Holstein-Friesians 
originating from commercial herds in Northern Ireland, 
constitutes of confirmed cases of bTB or controls 
(Bermingham et al. (2014)); dataset 2 comprised 287 
Holstein bulls from the Republic of Ireland with estimated 
breeding values (EBVs) calculated from their daughter 
phenotypes (Finlay et al. (2012)). To analyse the two 
datasets together, an initial fixed effects model was used 
for the first dataset, pre-correcting for all non-genetic fixed 
effects and the residuals of this model were used as 
phenotypes in the subsequent analysis. For dataset 2, the 
de-regressed EBVs (i.e. EBVs divided by their reliability) 
were used as phenotypes, either with pedigree information 
included in their calculation or without. All phenotypes 
were standardised by their standard deviation. 

Genotypes. The first dataset was genotyped using 
the Illumina high-density Bead Chip, while the second was 
genotyped with the Illumina Bovine50 SNP chip. A pooled 
dataset was constructed with the SNPs present in both 
datasets (i.e. 36690 SNPs) after applying quality control 
(MAF>0.05, call rate>95%, HWE p<0.000001, all 
homozygotes, all heterozygotes, or all missing were 
removed).  

Regional heritability mapping. RH mapping 
methodology was applied as described by Nagamine et al. 
(2012). The population of origin was fitted as a fixed effect 
whereas genomic and local IBS kinship (G, GL) matrices 
(Leutenegger et al (2003)) calculated for each window 
were fitted as random effects i.e. yi = m + βi + ui + ri + ei, 
where yi is the adjusted phenotype of individual i, βi 
indicates the dataset from which i belong to, ui its additive 
genomic effects (u~MVN(0, σu

2G)), and ri its additive 
regional effects (r~MVN(0, σu

2GL)). The combined dataset 



was analysed with three window sizes: a 50-SNP window 
size (25-SNP step), 30-SNP (15-SNP step), and 20-SNP 
(10-SNP step). Overall heritability was obtained in a 
separate ASReml analysis assuming no QTL affecting the 
trait (null hypothesis). The RH was calculated for every 
window as h2

r = σ2
r/σ2

p, where σ2
r was the variance 

explained by the window and σ2
p was the phenotypic 

variance. A log-likelihood ratio test (LRT) was calculated 
for every window. The region with the maximum RH 
estimate and LRT (RHmax and LRTmax) was identified for 
each chromosome across all chromosomes, and suggestive 
and genome-wide significance thresholds were obtained 
after Bonferroni correction. Analyses were repeated for 
EBVs calculated with and without pedigree information 
for dataset 2, and results compared. 

Chromosomal heritability estimation. The 
heritability for each chromosome was calculated using four 
approaches: a) using G matrices calculated separately for 
each chromosome (hc(sep)

2), i.e. yi = βi + gc + e, where gc is 
the vector of genetic effects of chromosome i, b) fitting 
separately each chromosome plus the whole G matrix, c) 
fitting all variance components (29 chromosomes) as 
random effects simultaneously (hc

2), i.e y = β + ∑gc +e, 
and d) fitting simultaneously the chromosomes with non-
zero variance in a), b) and c). Comparing results from a), 
b) and c) gives insight into how the G matrix contributes to 
the heritability, i.e. through genome-wide additive genetic 
relationships or specific markers tagging mutations with 
large effects on the trait. If (i) hc(sep)

2 (a) and (ii) hc(sep)
2-hc

2 
(c) are regressed on chromosome length (Lc), then the 
proportion of genetic variance due to population structure 
can be calculated as b0/b0(sep) where b0 and b0(sep) are the 
intercepts of the two regressions (Yang et al. (2011)).  

Genomic prediction cross-validation. The 
predictive ability of the genomic EBVs (DGVs) was tested 
through CV methodology. Two approaches were followed: 
(a) individuals from both populations were combined in 
one dataset and then randomly assigned to five groups (5-
fold CV), each time using one group as the test set and the 
remaining four groups as training sets using the model yi = 
m + ui+ ei, where ui is the genomic estimated breeding 
value with u ~ MVN (0, σu

2G). This procedure was repeated 
50 times, each time with a different randomisation of the 
individuals in the groups, and DGVs both with and without 
familial information (dataset 2) were tested; (b) CV was 
conducted across populations using the smaller population 
(dataset 2) as the test set with pedigree derived EBVs. The 
average accuracy across 50 randomisations was calculated 
in (a) and the expected accuracy in (b), as E[r(g,ĝ)] ≈ 
r(y,ŷ)/h, where r(y,ŷ) is the correlation between the cross-
validated predicted DGVs (ŷ) and the adjusted phenotypes 
and h is the square root of the heritability. The standard 
error of the accuracies in (a) was calculated as the 
empirical standard deviation of the 50 accuracy estimates.   
 

Results and Discussion 
 

Regional heritability estimates. The genomic 
heritability when the EBVs without pedigree information 
(for dataset 2) were used was 0.14 (0.05), and for the 

EBVs estimated using pedigree was 0.11 (0.04). These 
values are indicative of genetic variation but care should 
be taken in their interpretation due to the different trait 
definitions. Windows contributing the maximum 
heritability and with the maximum LRT test value were 
identified for each chromosome, for the three window 
sizes. For the EBVs without pedigree information (dataset 
2), RHmax ranged from 0.005 to 0.032 for the 20-SNP 
window, from 0.004 to 0.029 for the 30-SNP window, and 
from 0.006 to 0.028 for the 50-SNP window. For the 
dataset 2 using pedigree-based EBVs RHmax ranged from 
0.172 to 0.409, from 0.009 to 0.359, and from 0.007 to 
0.353 for the 20, 30 and 50-SNP windows. However, as 
demonstrated by Ekine et al. (2013), inclusion of pedigree 
information is likely to inflate the estimated effects.  

The strongest evidence for association was on 
chromosome 6 (BTA6) for the 50-SNP window, 
significant at the suggestive significance threshold for the 
dataset comprising EBVs without pedigree information 
(LRTmax= 9.19, suggestive threshold=9.02), with the 
window explaining 2.7% (h2

r =0.027) of the phenotypic 
variance (Fig. 1 and 2). This result was not observed by 
either Bermingham et al. (2014) or Finlay et al. (2012). 
With EBVs calculated using pedigree, BTA6 gave an 
LRTmax= 7.16 for the 50-SNP window and h2

r =0.238, with 
this value again likely to be an overestimate.   
 

 

 
*The red line represents the suggestive significance threshold. 
 
Figure 1. Log-likelihood ratio test for chromosome 6 
from the Regional heritability analysis ( 50-SNP 
window).  

 
Comparing RH to a single-SNP approach, a 

GWAS was conducted fitting two principal components as 
fixed effects along with dataset of origin to address 
possible stratification (1438 individuals and 36461 markers 
passed quality control, MAF>0.05, call rate>0.95). A 
pattern on BTA6 was still visible, but no locus reached 
significance. This may indicate the increased power of RH 
mapping to detect genomic regions associated with the 
trait, compared to single-SNP GWAS, however SNP-
mutation linkage phases may also differ between 
populations.  
 
 



 
 

Figure 2. Chromosomal heritability estimates for non-
zero variance chromosomes. 
 

Chromosomal heritability estimates. 
Chromosomal heritability estimates confirmed findings 
from RH analyses for BTA6 with all four methods in good 
agreement (Fig. 2). Heritability estimates for BTA6 were 
0.054, 0.039, 0.042 and 0.043 when every chromosome 
was fitted one by one, when the genomic matrix was also 
included in the model, when all 29 chromosomes were 
fitted simultaneously, and when the chromosomes with 
non-zero variance were fitted, respectively. From 
approaches (a) and (b) it is possible to identify the 
chromosomes contributing most of the observed variation, 
although heritabilities when fitting only one chromosome 
(a) were always overestimated. For highly polygenic traits 
the proportion of variance explained by each chromosome 
is expected to be proportional to its length (Yang et al. 
(2011)); here the captured genetic variation was weakly 
related to chromosome length (b0(sep)=0.0149, b1(sep)= 
0.00004, R2 = 0.0053, p-value: 0.7), and 9 chromosomes 
explained 22% of the phenotypic variance. An explanation 
would be that bTB resistance is a complex trait with 
clusters of causal variants spread over several 
chromosomal regions collectively controlling the trait.  
Regressing the difference between the heritability when 
the chromosomes were fitted individually (a) and when 
were fitted simultaneously (c) on the chromosomal length 
was not significantly different than zero (b0 = 0.0126, b1 = -
0.00003, R2 = 0.0166, p-value: 0.5). From the intercepts b0 
and b0(sep) the proportion of genetic variance due to 
relatedness was estimated to be 0.85. These results suggest 
that although the markers capture loci effects through 
linkage disequilibrium (LD), additive pedigree-correlated 
relationships are likely to play an important role.  
 

Genomic prediction cross-validation. Increasing 
the size of the training set is expected to be beneficial in a 
cross validation. Therefore, we combined the two 
populations in a 5-fold cross validation, and compared 
predictions within and across populations. The average 
prediction accuracies obtained on the combined 
populations across 50 iterations were r(g,ĝ)=0.33 (s.e. 
0.007) when the EBVs without pedigrees were used, and 
r(g,ĝ)=0.38 (s.e. 0.007) for the pedigree based EBVs. 
Consistent with results mentioned above, including family 
information in the EBVs resulted in inflated estimates. 
Cross validation across populations, and despite using 

EBVs with pedigree information, resulted in reduced 
accuracy (r(g,ĝ)=0.1). These results suggest that genomic 
prediction is feasible but less accurate when applied across 
disparate populations since the accuracy depends on the 
genetic relationship of the test set to the training set. This 
is due to systematic differences in allele frequencies and 
linkage phases across the populations. Prediction accuracy 
was improved when individuals from the population to be 
predicted were included in the training set (a). 
 

Conclusion 
 

Following the regional heritability and 
chromosomal heritability approaches we have identified a 
region on BTA6, suggesting a putative association with the 
trait of bTB resistance. Many genes reside in the genomic 
region identified that could be suggested as possible 
candidates for further studies. Combining different 
populations is a challenging procedure, with the joint 
populations expected to behave differently than when 
analysed separately. The cross validation conducted in this 
meta-analysis has confirmed the potential feasibility of 
genomic selection for bTB resistance in cattle, although 
drawing robust inferences on across-population predictions 
would require more phenotyped and genotyped animals.   
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