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Abstract 

A dynamic, deterministic model was developed to investigate the consequences of parasitism 

with Ostertagia ostertagi, the most prevalent and economically important gastrointestinal 

parasite of cattle in temperate regions. Interactions between host and parasite were considered 

to predict the level of parasitism and performance of an infected calf. Key model inputs 

included calf intrinsic growth rate, feed quality and mode and level of infection. The effects 

of these varied inputs were simulated on a daily basis for key parasitological (worm burden, 

total egg output and faecal egg count) and performance outputs (feed intake and bodyweight) 

over a 6 month grazing period. Data from published literature were used to parameterise the 

model and its sensitivity was tested for uncertain parameters by a Latin hypercube sensitivity 

design. For the latter each parameter tested was subject to a 20% coefficient of variation. The 

model parasitological outputs were most sensitive to the immune rate parameters that affected 

overall worm burdens. The model predicted the expected larger worm burdens along with 

disproportionately greater body weight losses with increasing daily infection levels. The 

model was validated against published literature using graphical and statistical comparisons. 

Its predictions were quantitatively consistent with the parasitological outputs of published 

experiments in which calves were subjected to different infection levels. The consequences of 

model weaknesses are discussed and point towards model improvements. Future work should 

focus on developing a stochastic model to account for calf variation in performance and 

immune response; this will ultimately be used to test the effectiveness of different parasite 

control strategies in naturally infected calf populations.  

Key words: calves, gastrointestinal parasites, immunity, modelling, Ostertagia ostertagi, 

parasite-induced anorexia 

 



 

1 Introduction 

There are increased concerns about prospects for sustainable control of gastrointestinal 

parasites in grazing ruminants. These stem from a variety of risks, including the loss of 

infection resistance as hosts are selected for production intensity (Mackinnon et al., 1991), 

climate change effects on parasite dynamics (Skuce et al., 2013), and the increased incidence 

of parasite resistance to anthelmintics (Rose et al., 2015). Although the latter has been more 

commonly identified for small ruminants, there is increasing evidence that it is also 

happening for cattle (Edmonds et al., 2010; O’Shaughnessy et al., 2014). Amongst others, 

Sutherland and Leathwick (2011) have reported parasite resistance to the three broad-

spectrum anthelmintic classes (benzimidazoles, levamisole and macrocyclic lactones) used on 

cattle. 

For this reason there is a need to develop strategies that would enable sustainable control of 

gastrointestinal parasites and maintain the effectiveness of chemoprophylaxis (Charlier et al., 

2014). Several strategies that may achieve this have been proposed, including targeted 

selective treatment (TST), breeding cattle resistant to parasites and grazing management. 

Testing for the effectiveness and interactions of such strategies is very difficult both 

experimentally and in practice. This is due to cost and difficulties in making fair 

comparisons, in the absence of confounding variables; for example although traits have been 

independently evaluated for TST in cattle, a direct comparison with other applied control 

strategies has not yet been conducted (Höglund et al., 2009, 2013). 

Recently, simulation models have been used to make such direct comparisons for control 

strategies on parasitised sheep (Laurenson et al., 2012a, 2013a, 2013b). Investigating the 

consequences of such strategies in silico for cattle may be one cost effective and time 



efficient way of overcoming the above limitations. Currently there are only two simulation 

models which investigate host-parasite interactions for cattle (Smith, 1987; Ward, 2006a). 

Both models have their limitations; for example, the former model cannot make predictions 

about the consequences of parasitism on performance, whereas the latter uses bodyweight as 

the only descriptor of the animal.  The objective of this paper was to develop a novel 

simulation model to account for the interactions between Ostertagia ostertagi, the most 

prevalent parasite of cattle worldwide, particularly in temperate regions (Tisdell et al., 1999), 

and immunologically naïve calves, which are most at risk from parasitism. Emphasis in 

model development was given to accounting for within host parasite dynamics and their 

effects on host performance.  The model was developed with the view of introducing 

between-animal variation in later steps. 

2 Materials and Methods 

2.1 Model Development 

The model stems from the approach of Laurenson et al. (2011) to simulate the effects of 

Teladorsagia circumcincta challenge on growing lambs. The developed model is 

deterministic and dynamic, as it predicts the responses of a single calf to infection over time.  

2.1.1 Parasite-free Animal  

2.1.1.1 Basic Intrinsic Growth Model 

The calf considered was a weaned, castrated male (steer) Limousin X Holstein Friesian born 

in autumn; this common cross currently represents the majority of beef cattle in the UK 

(Todd et al., 2011). Autumn born calves are capable of utilising grass in spring and hence are 

turned out at approximately 6 months of age and left at pasture until late autumn (Phillips, 

2010).  



The empty body mass composition of a calf comprises of its components protein, lipid, ash, 

water and a negligible amount of carbohydrates; each of these have an expected growth rate 

(Supplementary Data S1) defined by animal genotype (Emmans and Kyriazakis, 2001). 

According to Wellock et al. (2004) intrinsic growth of mammals can be modelled using a 

sigmoidal growth function, where the calves grow at a rate relative to their current and 

mature mass. Thus in order to predict intrinsic, henceforth called ‘desired’, growth, only three 

parameters were required: the current body mass of the animal, its growth rate parameter B 

(day-1) and its mature body mass (Emmans and Kyriazakis, 1997). It was further assumed that 

the animal has an intrinsic body fatness, which was defined by the lipid to protein ratio at 

maturity (Emmans, 1997). The mature empty body mass (𝐸𝐵𝑊𝑀) was estimated at 680 kg 

and the B rate parameter as 0.0071 day-1 for steers from the data of English Beef and Lamb 

Executive (EBLEX) Better Returns Programme (2005) (Supplementary Data S1). The total 

bodyweight (BW) of the calf at any given time point was the sum of the empty body weight 

and the gutfill (GF) of the calf.  

2.1.1.2 Resource Requirements and Feed Intake 

As with previous models (Laurenson et al., 2011; Vagenas et al., 2007a) only protein and 

energy requirements were considered, as all other nutrient requirements were assumed to be 

fulfilled by the feed and were not limiting to the calf (Wellock et al., 2004). It is generally 

accepted that healthy ruminants allocate feed resources to three functions: maintenance, 

growth and reproduction (Coop and Kyriazakis, 1999). Equations for the protein and energy 

requirements for the processes of maintenance and growth are given in Supplementary Data 

S1. 

It was assumed that the calf attempts to eat to fulfil its requirements for the first limiting feed 

resource (Emmans and Kyriazakis, 2001). As feed quality declines, feed intake initially 



increases, to a maximum defined by gut capacity (Kyriazakis and Emmans, 1995). Hence 

feed bulk is the only constraint that may prevent a healthy calf from satisfying its 

requirement.  Equations to describe the feed intake needed to fulfil protein and energy 

requirements are given in Supplementary Data S1. In order to reflect the day to day variation 

in calf feed intake, a random effect caused by environmental influences was assumed 

(Doeschl-Wilson et al., 2008).  

2.1.1.3 Allocation of Constrained Resources 

There are numerous circumstances under which intake of resources may be insufficient to 

meet the needs of all primary functions (requirements). When this happens, the animal has 

the problem of how to allocate its limiting feed resources (Coop and Kyriazakis, 1999).  

Here, it was assumed that the requirements for maintenance were met first, and any excess 

was allocated to growth. The efficiency of protein deposition and lipid deposition were 

considered to be 0.50 and 0.59, respectively (AFRC, 1993). If there are insufficient resources 

to fulfil maintenance requirements then the host will undergo catabolism of protein and lipid 

body reserves and ensure calf survival in the short-run. If either of these deficiencies is 

maintained over a significant time period the calf will continue to catabolise stores until death 

occurs.  

2.1.2 Parasitised Calf 

The model describes the host-parasite interactions presented in Figure 1. The process starts 

with the ingestion of larvae, a proportion of which will establish in the gastrointestinal tract 

and develop into adult worms resulting in a cost to the host in terms of protein loss (Fox, 

1993). Of these adult worms a proportion will die on each given day and any surviving adult 



female will produce eggs. These three processes are affected by the host through its immune 

responses. 

2.1.2.1 Immune Response 

Calves were assumed to have had no prior parasitic exposure at turnout to pasture. Although 

the immune response to O. ostertagi is currently not well understood (Li et al., 2010), worm 

burden has been found to show significant negative correlation to level of parasitic exposure 

over time (Vercruysse and Claerebout, 1997).  Immune development following exposure was 

reflected in three parasite within-host relationships: establishment (𝜀), mortality (𝜇) and 

fecundity (𝐹) (Bishop and Stear, 1997). To quantify the degree of parasite exposure, and 

hence the acquisition of an immune response, the measure of larvaldays was devised. 

Larvaldays is a measure of the cumulative exposure to parasites, a function of the larval dose 

administered and the length of time the host experiences each individual larva, and was 

chosen to represent immune development due to its ability to account for the larval intake of 

one day to have effects on exposure in subsequent days, in addition to further incoming 

larvae (equation 1). Larvaldays does not take into account larvae that have died or failed to 

establish, because the effect was found to be inconsequential, due to the relationship between 

larvaldays and the immune response (see below). All three affected responses (establishment, 

mortality and fecundity) were expressed as functions of larvaldays. 

𝐿𝑎𝑟𝑣𝑎𝑙𝑑𝑎𝑦𝑠 = 𝐿𝑎𝑟𝑣𝑎𝑙𝑑𝑎𝑦𝑠𝑡−1 + ∑ 𝐿𝐼    (1) 

where ∑ 𝐿𝐼 is the cumulative larval intake and t is time in days 



2.1.2.2 Defining and Parameterising Parasite Burdens 

In the absence of an immune response a maximum proportion of ingested larvae will 

establish; as the animal develops immunity, the proportion of the larvae that establish will 

decline until a plateau is reached (Klesius, 1988). A proportion of the established adult 

worms will die on any given day: in the absence of immunity a minimum mortality rate 

applies and as immunity develops this increases towards a maximum (Kao et al., 2000). 

Available data that measures the worm burden of parasitised calves for given larval 

challenges reflects the combination of the above two processes. These data alone cannot be 

used to show the separate effects of establishment and mortality.  

Initially, the combined effect of establishment and mortality was plotted against larvaldays 

from the experiment A of Michel (1969), one of the very few experiments with such data. 

The data suggested an exponential relationship between larvaldays and the combined effect 

of establishment and mortality (EM), taking the form: 

 

𝐸𝑀 = (𝐸𝑀𝑚𝑎𝑥 − 𝐸𝑀𝑚𝑖𝑛) ∙ exp  (−𝑘𝐸𝑀 ∙ 𝑙𝑎𝑟𝑣𝑎𝑙𝑑𝑎𝑦𝑠) + 𝐸𝑀𝑚𝑖𝑛 

(change in adult worm numbers/day) 

 

 

(2) 

where 𝐸𝑀𝑚𝑎𝑥 is the maximum of combined establishment and mortality, 𝐸𝑀𝑚𝑖𝑛 is the 

minimum of combined establishment and mortality and 𝑘𝐸𝑀 is the constant relationship 

between larvaldays and the combined establishment and mortality level. The parameter 

values obtained from fitting the equation (2) to data were 0.82 (𝐸𝑀𝑚𝑎𝑥), 0.08 (𝐸𝑀𝑚𝑖𝑛) and 

2.6E-08 (𝑘𝐸𝑀) (R=0.738, RMSE=0.119). However, it was necessary to separate the effects of 

establishment and mortality in order to capture worm burden dynamics. It was, therefore, 

assumed that worm mortality rate followed the same sigmoidal pattern as described by Louie 

et al. (2005): 



𝜇 =
(𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛)  ∙  (𝐿𝑎𝑟𝑣𝑎𝑙𝑑𝑎𝑦𝑠)2

𝑘𝜇
2 +  (𝐿𝑎𝑟𝑣𝑎𝑙𝑑𝑎𝑦𝑠)2

+ 𝜇𝑚𝑖𝑛 

(proportion adult worms/day) 

 

 

(3) 

where 𝜇𝑚𝑎𝑥 is the maximum mortality, 𝜇𝑚𝑖𝑛 is the minimum mortality and 𝑘𝜇 is a constant of 

the relationship between larvaldays and the mortality. The parameters were estimated using 

the values of Vagenas et al. (2007a) as a baseline, and adjusted to produce similar patterns of 

worm burden to those observed by Michel (1969). Values were estimated at 0.12 (𝜇𝑚𝑎𝑥), 

0.01 (𝜇𝑚𝑖𝑛) and 4E+06 (𝑘𝜇). The remaining effect on the adult worm numbers after 

accounting for mortality was assumed to be attributable to the establishment rate (𝜀):  

  

𝜀 =
𝐸𝑀

1 −  𝜇
 

(Proportion larvae establishing/day) 

 

 

(4) 

The modelled worm burdens were fitted to experimental data from experiment A of Michel 

(1969) to estimate establishment and mortality rate parameters within a dynamic system.   

The likely stochastic nature of the pre-patent period was assumed to be normally distributed 

across this time period (mean=21 days, SD= 1.64 days), and was estimated at whole day 

increments.  This allowed for the gradual appearance of a worm burden rather than the 

otherwise sudden maturation of all larvae on a single day and can be represented as follows: 

 𝑀𝑎𝑡𝑢𝑟𝑒𝐿𝑥 = 𝐿𝑎𝑟𝑣𝑎𝑒16 ∙  𝑃𝑥 (5) 

where 𝑀𝑎𝑡𝑢𝑟𝑒𝐿𝑥 is the number of larvae maturing on day x from a given larval cohort, 

𝐿𝑎𝑟𝑣𝑎𝑒16 is the total number of larvae that will mature into adult worms from each larval 

cohort (administered 16 days previously) and 𝑃𝑥 is the normal probability density function 

integrated over 1 day (and assumed to be negligible for t<17 and t>25).  



The worm burden could then be defined at time t as a function of the previous day’s worm 

burden and the newly matured adult worms (summed across all larval cohorts): 

𝑊𝐵𝑡 = (1 − 𝜇) ∙ 𝑊𝐵𝑡−1 +  ∑ 𝑀𝑎𝑡𝑢𝑟𝑒𝐿𝑥

𝑡

 
(6) 

where 𝑊𝐵𝑡 is the new worm burden, 𝑊𝐵𝑡−1 is the previous days worm burden, 𝜇 is the 

parasite mortality and ∑ 𝑀𝑎𝑡𝑢𝑟𝑒𝐿𝑥 is the sum of newly matured adult worms across all larval 

cohorts. 

2.1.2.3 Defining and Parameterising Worm Fecundity and Worm mass 

As with parasite establishment, the fecundity (eggs/female) was assumed to decline towards a 

plateau as immunity was acquired (Michel, 1969). The immune response effect on fecundity 

was assumed to develop at a different rate to the establishment and mortality due to different 

underlying immune mechanisms (Stear et al., 1995; Prada Jiménez de Cisneros et al., 2014). 

As with EM the eggs per female was plotted against larvaldays from the experiment A of 

Michel et al. (1969); the data suggest an exponential relationship between larvaldays and 

fecundity (F), taking the form: 

where  𝐹𝑚𝑎𝑥 is the maximum number of eggs per female worm, 𝐹𝑚𝑖𝑛is the minimum number 

of eggs per female worm and 𝑘𝐹 is the constant of the relationship between larvaldays and 

fecundity. After fitting the equation to the data of Michel (1969) parameter values of 39 

( 𝐹𝑚𝑎𝑥 ), 6 (𝐹𝑚𝑖𝑛) and 2.9E-07 (𝑘𝐹) were obtained (R=0.673, RMSE=4.781). Key 

assumptions made were that the proportion of female worms was 0.55 (Verschave et al., 

2014) and eggs develop at the same rate, irrespective of the age and length of the worm.  

𝐹 = (𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛) ∙ exp(−𝑘𝐹 ∙ 𝑙𝑎𝑟𝑣𝑎𝑙𝑑𝑎𝑦𝑠  ) + 𝐹𝑚𝑖𝑛 

(Eggs/female/day) 

 

(7) 



Worm mass was calculated to provide a more complete measure of parasite infection (Bishop 

and Stear, 1997; Michel et al., 1978); this accounted for worm length as affected by the 

density dependence effect, whereby worm size (and fecundity) decrease with increasing 

worm numbers (Michel et al., 1978). Worm length has been found to display strong positive 

correlation to adult worm fecundity (Stear and Bishop, 1999). The density dependence effect 

on worm mass was described according to Vagenas et al. (2007a) (equations 8 & 9): 

𝐹𝑆𝑐𝑎𝑙𝑒𝑑 = 𝐹 ∙ (
𝑊𝐵

𝑊𝐵𝐴𝑣
) 𝐷𝐷 

(Eggs/female/day)    (8) 

where WBAv is the worm burden at which FScaled is equal to F and provides an estimate at 

which intraspecific competition between worms occurs for limited resources, this was taken 

to be 15,000 adult worms per calf (Michel, 1969); and 𝐷𝐷 is a constant density dependence 

factor (-0.5). 

Given the strong positive correlation between worm length and fecundity (Stear and Bishop, 

1999), worm mass (WM) was calculated as: 

𝑊𝑀 = 𝑊𝐵 ∙ 𝐹𝑆𝑐𝑎𝑙𝑒𝑑  

(9) 

FECs (eggs/g faeces) were calculated as the total daily egg output divided by the daily faecal 

output as estimated from the passage of undigested dry matter (DM). The random nature of 

sampling FEC was modelled as a Poisson distribution (Torgerson et al., 2012), after taking 

into account the limit of detection of the modified McMaster technique to measure 25 eggs/g 

of faeces (Borgsteede and Hendriks, 1979; Geldhof et al., 2002). Grazing beef calves average 

a faecal DM content of 140-350 g DM/ kg faeces (Allen et al., 1970; Bellosa et al., 2011; 



Jalali et al., 2015; Young and Anderson, 1981), hence it was assumed that faecal DM 

comprised 0.25 of the faecal matter. 

2.1.2.4 Parasite-induced Anorexia 

A reduction in voluntary feed intake accompanies parasitic infections (Kyriazakis et al. 1998: 

Kyriazakis 2014).  In O. ostertagi infection anorexia does not appear on average before 21 

days post-infection (Szyszka and Kyriazakis, 2013), which coincides with the first 

appearance of adult worms. Anorexia was modelled as a direct function of the rate of 

acquisition of immunity as per Laurenson (2011). The anorexia was then applied to actual 

feed intake, as described below, through a reduction parameter (RED). This was calculated as 

a direct function of the rates of firstly the combined effect of establishment and mortality and 

secondly of fecundity. Due to the differing physical units of the two immune measurements it 

was necessary to include a scaling factor; the rate of change in each response was scaled by 

the maximum possible change in the immune rate as follows: 

𝑅𝐸𝐷 = 𝐶1 (
𝑑𝐸𝑀/𝑑𝑡

𝐸𝑀𝑚𝑎𝑥 − 𝐸𝑀𝑚𝑖𝑛
+

𝑑𝐹/𝑑𝑡

𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛
) 

  (10) 

where 𝐶1is the scaling parameter, D𝐸𝑀/𝑑𝑡 is the rate of change in combined establishment 

and mortality and 𝑑𝐹/𝑑𝑡 is the rate of change in fecundity. 

A maximum RED for subclinical infections was considered (0.20 (Sandberg et al., 2006)). 

During the course of an infection RED will start at zero, rise to a maximum and then decline 

towards zero as immunity is acquired, however due to the slow development of immunity 

complete recovery may not occur over the time period considered. The reduction is 

considered a function of the desired feed intake to fulfil all requirements: 



𝐹𝐼𝑎𝑛𝑜𝑟𝑒𝑥𝑖𝑐 = (1 − 𝑅𝐸𝐷)  ∙  𝐹𝐼𝑑𝑒𝑠𝑖𝑟𝑒𝑑 

(kg/day)               

 

 (11) 

where 𝐹𝐼𝑎𝑛𝑜𝑟𝑒𝑥𝑖𝑐 is the feed intake of an anorexic calf and 𝐹𝐼𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired feed intake 

of the calf to fulfil all resource requirements. 

2.1.2.5 Protein Loss 

One of the consequences of O. ostertagi infection is damage to the abomasal tissue of the 

host, resulting in protein loss (Fox, 1993; Holmes, 1993). The protein loss is a function of 

both larval burden and worm mass (Scott et al., 2011; Parkins and Holmes, 1989 ); the 

general trend observed for both is a sigmoidal increase up to an asymptote as the mass 

increases (Vagenas et al., 2007a). The simplest equation to describe this was proposed to be a 

logistic equation with the rate values that have been determined heuristically to fit 

bodyweight losses in literature (Szyszka and Kyriazakis, 2013). Equations for the potential 

protein losses were represented as: 

𝑃𝐿𝑀𝑃𝑜𝑡 =  
𝑃𝑙𝑜𝑠𝑠𝑚𝑎𝑥. 𝑃𝑙𝑜𝑠𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ∙ exp (𝑟𝐿𝐵 ∙ 𝐿𝐵)

𝑃𝑙𝑜𝑠𝑠𝑚𝑎𝑥 + 𝑃𝑙𝑜𝑠𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ∙ (exp (𝑟𝐿𝐵 ∙ 𝐿𝐵) − 1)
 

 

 

(kg/day) 

(12) 

𝑃𝑊𝑀𝑃𝑜𝑡 =  
𝑃𝑙𝑜𝑠𝑠𝑚𝑎𝑥. 𝑃𝑙𝑜𝑠𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ∙ exp (𝑟𝑊𝑀 ∙ 𝑊𝑀)

𝑃𝑙𝑜𝑠𝑠𝑚𝑎𝑥 + 𝑃𝑙𝑜𝑠𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ∙ (exp (𝑟𝑊𝑀 ∙ 𝑊𝑀) − 1)
 

 

(kg/day) 

(13) 

where 𝑃𝑙𝑜𝑠𝑠𝑡𝑎𝑟𝑔𝑒𝑡 is the target protein loss (0.0001 (Vagenas et al., 2007a; Laurenson et al., 

2011)),  𝑃𝑙𝑜𝑠𝑠𝑚𝑎𝑥 is the maximum protein loss (0.5kg/d, see equation 13), 𝑟𝐿𝐵 (8.5E-5) and 

𝑟𝑊𝑀 (8.0E-6) are the rates of protein loss associated with larval burden (LB) and worm mass 

(WM) respectively.  



The total protein loss is considered as the sum of the protein loss caused by both larval 

burden and by worm mass (see Supplementary Data S1, equations A.20 & A.21), up to a 

capped maximum protein loss. The maximum protein loss caused by parasitic burden is the 

maximum protein loss the host can withstand; if this is sustained across time calf mortality 

may eventually occur. As far as we are aware measurements of maximum protein loss for 

infected calves do not appear in the literature but have been reported for sheep, estimated as 

0.01 kg/day (Laurenson et al., 2011). An allometric scaling parameter linking mature weight 

of sheep and cattle was used to scale the maximum protein loss for lambs to give a maximum 

value of 0.5 kg/d in calves.  

 𝑃𝑙𝑜𝑠𝑠𝑀𝑎𝑥(𝑆𝑡𝑒𝑒𝑟) =  (
𝐵𝑊𝑀 (𝑆𝑡𝑒𝑒𝑟)

𝐵𝑊𝑀 (𝑆ℎ𝑒𝑒𝑝)
)0.73 ∗ 𝑃𝑙𝑜𝑠𝑠𝑀𝑎𝑥(𝑆ℎ𝑒𝑒𝑝) 

(kg/day) 

 

 

(14) 

where 𝐵𝑊𝑀 (𝑆𝑡𝑒𝑒𝑟) is the mature weight of a steer, 𝐵𝑊𝑀 is the mature body weight of a 

sheep, 𝑃𝑙𝑜𝑠𝑠𝑀𝑎𝑥(𝑆𝑡𝑒𝑒𝑟) is the maximum calf protein loss and 𝑃𝑙𝑜𝑠𝑠𝑀𝑎𝑥(𝑆ℎ𝑒𝑒𝑝)is the maximum 

protein loss in lambs.  

2.1.2.6 Partitioning Limited Protein Resources 

Parasitised calves were assumed to have two additional functions to which they must allocate 

resources; damage repair and an immune response. As with healthy calves the maintenance 

requirements, along with damage repair were satisfied first (Coop and Kyriazakis, 1999). If 

these needs are not met then protein stores would be catabolised and eventually the calf 

would succumb to the consequences of the infection. Conversely, if nutrients remain after 

allocation to maintenance, they would be allocated between the two remaining functions of 

immunity and growth in proportion to their requirements (Coop and Kyriazakis, 1999). This 

allocation strategy is consistent with evidence of both reduced growth and immune 



development in nutritionally limited calves (Mansour et al., 1991, 1992). Proportional 

allocation may allow the host to tolerate a small number of parasites providing opportunity 

for parasite recognition to develop over time, and hence prevent a large infection arising 

(Viney et al., 2005). The resource requirements for maintenance and growth are given in 

section 1.1.3 of Supplementary Data S1, whereas the requirements for damage repair and the 

immune response were calculated as per Laurenson et al. (2011). 

Due to protein allocation to the immune response there will be a reduction in protein loss 

caused by the parasites per se. The protein loss is then re-estimated following the reduction in 

worm mass and the spared protein added back to the available protein. The allocation to 

growth was estimated as:  

𝑃𝐴𝐶𝐺𝑟𝑜𝑤𝑡ℎ = 𝑃𝐴𝑣𝑎𝑖𝑙 − (𝑃𝐴𝐶𝐼𝑚𝑚 + 𝑃𝐿𝑜𝑠𝑠) 

(kg/day) 

 

(15) 

where 𝑃𝐴𝐶𝐺𝑟𝑜𝑤𝑡ℎ is the actual protein allocated to growth, 𝑃𝐴𝐶𝐼𝑚𝑚 is the protein allocated to 

immunity, 𝑃𝐿𝑜𝑠𝑠 is the protein loss after taking into account immunity and 𝑃𝐴𝑣𝑎𝑖𝑙 is the 

protein available to allocate to these processes. 

2.1.3 Investigating Model Behaviour 

The model was used to investigate predictions for a range of parasite infection intensities. 

The default values for the model were Limousin x Holstein-Friesian steers allowed ad-libitum 

access to high quality grass (AFRC,1993) for one grazing season (6-7 months from turnout). 

The default calf genotype was characterised according to EBLEX (2005) (Supplementary 

Data S1) with 106kg of protein at maturity (𝑃𝑀), 207kg of lipid at maturity (𝐿𝑀) and 0.0071 

per day growth rate (B). 



Model outputs were simulated for two challenge situations: the first tested the effect of 

different trickle doses of infective larvae administered daily. These were 3,500, 7,000 and 

14,000 L3/d representing a range of larval intakes that might lead to subclinical infections 

(Szyszka and Kyriazakis, 2013). The second investigated the effect of weekly as opposed to 

daily trickle infections, to match the common experimental protocol for parasite 

administration (Szyszka and Kyriazakis, 2013; Wiggin and Gibbs, 1989; Xiao and Gibbs, 

1992). The number of infective larvae administered for this purpose was a total of 210,000 L3 

administered within a three week period. This was given either as a single dose, 3 doses of 

70,000 L3 per week or as 21 doses of 10,000 L3/d. The daily outputs predicted by the model 

were worm burden, calf total egg output, FEC, feed intake and bodyweight. 

2.2 Model Sensitivity  

In order to determine which parameters have the most significant effect on the model outputs 

a sensitivity analysis was conducted. An ANOVA was performed to determine the 

contribution of selected model parameters to variance of each output measure (Campolongo 

et al., 2011; Saltelli et al., 2010). The parameters selected were those for which the least 

confidence in actual values existed, but which appeared mechanistically important for model 

behaviour; this included 5 categories with a total of 12 parameters between them.  

The following five categories were targeted for investigation: 

1. Larval establishment and adult worm mortality as defined by 3 parameters: 𝑬𝑴𝒎𝒂𝒙 – 

maximum proportion of larvae establishing and surviving as adult worms;  𝑬𝑴𝒎𝒊𝒏 – 

minimum proportion of larvae establishing and surviving as adult worms;  𝒌𝑬𝑴 – the 

constant relationship between larvaldays and surviving adult worms as affected by 

establishment and mortality. 



2. Adult worm mortality as defined by 3 parameters: 𝝁𝒎𝒂𝒙 – maximum effect of 

mortality on adult worms; 𝝁𝒎𝒊𝒏 – minimum effect of mortality on adult worms; 𝒌𝝁 – 

the constant relationship between larvaldays and adult worm mortality. 

3. The fecundity of female adult worms defined by 3 parameters: 𝑭𝒎𝒂𝒙, – maximum 

number of eggs per female worm; 𝑭𝒎𝒊𝒏 – minimum number of eggs per female worm; 

𝒌𝑭 – the constant relationship between larvaldays and number of female worms. 

4. The rate of reduction in feed intake dependent on rate of immune acquisition: C1 

5. The rate of protein loss, as defined by two rate parameters: 𝒓𝑾𝑴 – the rate of protein 

loss associated with adult worm mass and 𝒓𝑳𝑩 – the rate of protein loss associated 

with larval burden. 

It was assumed that each parameter was normally distributed (Vagenas et al., 2007c), using 

the best-estimate value as the parameter mean and assuming a coefficient of variation of 

20%. The possible values for the constant relationships with larvaldays levels (k) of 

establishment, mortality and fecundity were considered to follow a log-normal distribution in 

order to take into account the possible variation of a rate parameter over orders of magnitude. 

For the same reason, the likely rates of protein loss were also assumed to follow a log-normal 

distribution. The distributions of parameter values were divided into 5 sections, each section 

assumed to be of equal probability, and the mid-point value selected. This allowed for a 

simpler and more consistent comparison in the analysis by selecting 5 possible values for 

each of the 12 parameters and then generating random combinations of these values. Using 

Latin hypercube sampling (LHS), parameters were sampled without replacement for each 

section to give 5 sets of parameter combinations. This was repeated 50 times to give a total of 

250 parameter combinations; this was considered a sufficient number of combinations to 

allow a 12-way ANOVA due to the large number of parameters that may affect each output. 

Each of the 250 combinations was then modelled over a 200 day period for the three separate 



challenge levels of 3,500, 7,000 and 14,000 L3/d and a record was taken of relevant outputs 

simulated. Each output set was then compared to the “best-estimate” output values (produced 

by the initial “best-estimate” parameters).   

An ANOVA of constrained (Type III) sum of squares was conducted to analyse five defined 

outputs, viz. peak worm burden, time of peak worm burden, the peak total egg count, the 

peak reduction in feed intake and finally the final bodyweight. Significance was tested at the 

99% level (p<0.01) in all cases. A multiple linear regression was then conducted to determine 

the percentage change in outputs with respect to changes in parameter values.  All model 

simulations and statistical analyses (ANOVA) were programmed in Matlab (2012).  

2.3 Model Validation 

The model was parameterised using data from experiment A of Michel (1969) due to its 

utility. To validate the model, graphical comparisons and statistical analyses were made on 

independent data from sets of published experiments. Model performance was assessed in 

terms of goodness-of-fit of the observed against predicted values for three selected outputs on 

a daily basis: adult worm burdens, total egg counts and FECs (Symeou et al., 2014). The 

literature studies selected for evaluation were based on the following criteria: (1) Infections 

were only with O. ostertagi and no other species were involved; (2) calves were infected 

during the growth phase; (3) calves were allowed access to ad-libitum, high quality feed; (4) 

calves were parasite naïve, i.e. had no prior experience of parasites before the experiment; (5) 

larval doses were administered either weekly or more frequently. 

Only eleven studies met the above criteria and were used to test for the effects of different 

trickle doses on (1) worm burdens (Michel & Sinclair, 1969; Michel, 1969 experiment B; 

Michel, 1970); (2) total egg counts (Michel & Sinclair, 1969; Michel, 1969 experiment B); 

(3) FECs (Claerebout et al., 1996; Forbes et al., 2009; Hilderson et al., 1995, 1993; Mansour 



et al., 1992; Satrija and Nansen, 1993; Wiggin and Gibbs, 1989; Xiao and Gibbs, 1992). The 

experimental larval challenges were used as inputs to the model. It was assumed that there 

has been little to no selection for resistance to O. ostertagi and hence the parasitological 

parameters that can be seen as host specific, have remained unchanged over the time period 

considered by all experimental studies (Prakash, 2009). In order to compare the model 

outputs to observed FECs the former must be considered as eggs per gram of wet faecal 

matter, however the DM content will vary dependent on the feed. For all studies where feed 

type was specified, calves were fed corn silage, hay or concentrates which lead to a higher 

faecal DM content than when fed on grass (Van Bruchem et al., 1991; Young and Anderson, 

1981); in these case the faecal DM content was assumed to be 350g/kg DM. 

The statistical analyses conducted to assess the goodness of fit for the purpose of model 

evaluation were as follows: (1) the correlation coefficients (R) were used to assess whether 

the simulated outputs followed the same pattern as observed values, with a value of unity 

signifying a perfect fit. (2) The coefficient of variation for the root mean square error (CV-

RMSE) measured the closeness of observed and predicted values; a lower value signifies a 

closer match. (3) The relative error (E) determined the bias of predicted results, which is the 

total difference between predictions and observations. This revealed whether the results have 

been consistently over or under estimated in relation to the observed data; a positive E value 

indicates over estimation and a negative E value under estimation (Symeou et al., 2014).  

𝐸 =
∑

(𝑂𝑖 − 𝑃𝑖)
𝑂𝑖

𝑛 − 1
 

where E is the relative error, 𝑂𝑖is the observed value, 𝑃𝑖is the predicted value and n is the 

total number of observations made.  



The statistical significance of CV-RMSE was assessed by CV-RMSE95%, a value greater than 

this suggests that the predicted values are not within the 95% confidence intervals of the 

observed data (Symeou et al., 2014). The statistical significance of E was also tested with 

E95%, again an E value below this signifies predicted values fell within the 95% confidence 

intervals for the observed measurements (Symeou et al., 2014). Due to the nature of 

experimental infections conducted on cattle it was difficult to find an appreciable number of 

studies giving values taken from multiple calves at repeated time points. Thus for a subset of 

studies, it was possible to estimate the 95% confidence intervals on the experimental data (to 

compare with model deviation as measured by CV_RMSE and E).  

3 Results  

3.1 Model Exploration 

The model predictions on the effects of different trickle infectious doses are detailed below; 

the same predictions for the effects of different modes of administration of the same 

infectious doses are shown in Supplementary Data S2. 

3.1.1 The Consequences of Different Levels of Infection 

The worm burdens of a single calf infected with different trickle doses of O. ostertagi are 

shown in Figure 2a. The rate of increase in worm burdens increased with increasing number 

of larvae administered, reaching a peak at 53, 48 and 44 days post infection (dpi) for the 

3,500, 7,000 and 14,000 L3/d respectively. Worm numbers and their negative gradient of 

reduction started to decline faster at higher tickle doses. Worm burdens never reached zero 

even when immunity was developed in full. This is due to the assumption that a small 

number of larvae (8%) will continue to establish and from those a number will survive as 

adult worms (88%). 



The FEC (eggs/g faeces) are a representation of the number of parasitic eggs found in a 

random sample of faeces (Figure 2b). The distribution of eggs throughout the faeces is 

overdispersed and therefore the FEC had the potential to be largely over or under estimated, 

which is represented by the large day to day variation. A clear pattern in total egg numbers 

produced by all female worms per day in a calf is in Figure 2c. The total egg counts show a 

similar pattern to worm burdens as this is reflective of the female worm populations, however 

the peak is slightly earlier at 33, 38 and 29 dpi for 3500, 7000 and 14,000 L3/d respectively. 

When comparing the relative maximum values of worm burdens and total egg outputs for 

different trickle doses, there was a greater difference across worm burdens. When compared 

to the low infection level of 3,500 the peak worm burdens for 7,000 and 14,000 L3/d were 

1.65 and 2.72 times greater, whereas for the peak total egg counts the differences were not as 

pronounced, being 1.17 and 1.34 times greater respectively.  

The feed intakes of calves given different trickle doses are shown in Figure 3a, together with 

the intake of a healthy calf for comparison. A reduction in feed intake was observed for all 

infection levels; the extent of the reduction was greater for larger challenges. The point at 

which the maximum reduction in intake was observed was earlier for larger infection levels 

with recovery for 3,500, 7,000 and 14,000 L3/d starting at d 42, 37 and 25 pi respectively in 

reflection of the immune development. Feed intake returned to levels similar to those by the 

uninfected calf for the larger infection level by day 130; this was not the case for the lower 

levels of infection, where intake was slightly below to that of the uninfected calf.  

The reductions in bodyweight of infected calves when compared to a healthy calf for 

different trickle doses are in Figure 3b. The effect on bodyweight was greater with larger 

infection levels; this was predominantly due to reduced feed intake and the damage caused by 

worms. As the challenge level increased, disproportionate losses in weight gain were 

observed: a 152% increase in losses was observed from 3,500 to 7,000 L3/d compared to a 



25% increase from 7000 to 14,000 L3/d. The maximum effects on the bodyweight appeared 

in the early stages of infection, where maximum bodyweight reductions of 3%, 9% and 12% 

were observed, for the three trickle doses respectively.  

3.2 Model Sensitivity 

Table 1 shows the range of values for simulated outputs of the three traits: peak worm 

burden, time of peak worm burden (days) and final bodyweight (kg), when the selected 

model parameters were simultaneously varied. The numerical ranges of the outcomes of 

maximum worm burden were largest for higher challenge levels. The range for final 

bodyweights, however, was the same for all challenge levels. Parameters that had a 

significant effect are reported in order of magnitude of effect on the given output (i.e. the 

output is most sensitive to the first noted parameter). P values are given in Supplementary 

Table S1. 

3.2.1 Parasitism Outputs 

Worm burdens were significantly affected by 3 parameters: 𝒌𝑬𝑴 (the constant relationship 

between larvaldays and its effect on establishment and mortality); 𝑬𝑴𝒎𝒂𝒙 (maximum effect 

of establishment and mortality) and 𝒌𝝁 (the constant relationship between larvaldays and 

mortality) when significance was fixed at the 99% significance level (p<0.01). Time of peak 

worm burden was significantly affected by 𝒌𝑬𝑴, 𝑬𝑴𝒎𝒂𝒙 and 𝝁𝒎𝒂𝒙 (maximum mortality) for 

all infection levels. The total egg counts were found to be sensitive to a large number of 

parameters with 4 having significant effect for all infection levels.  Affecting parameters 

were 𝒌𝑬𝑴; 𝑭𝒎𝒂𝒙 (maximum fecundity) and 𝑬𝑴𝒎𝒂𝒙. Additionally, total egg counts were 

significantly affected by 𝝁𝒎𝒂𝒙 at 14,000 L3/d, whereas the effect was not significant for other 

infection levels.  



The relative effect of changing each parameter can be seen in the linear regression plots, as 

demonstrated for the infection level of 14,000 L3/d (Figure 4). The sensitivity ratio plotted 

indicates the relative change in the output for a given relative change in the parameter; for 

example, a coefficient of 1 indicates that a 10% increase in the parameter produces a 10% 

increase in the particular model output. The largest infection level of 14,000 L3/d was chosen 

as this appeared to be the most sensitive to parameter changes. From these plots it was clearly 

seen that measures of parasitism were most sensitive to the constant relationship between 

larvaldays and the combined effect of establishment and mortality. Conversely, changes in 

the parasite-related parameters of 𝑬𝑴𝒎𝒊𝒏 (minimum effect of establishment and 

mortality), 𝝁𝒎𝒊𝒏 (minimum mortality), 𝑭𝒎𝒊𝒏 (minimum fecundity),  𝒌𝑭 (the constant 

relationship between larvaldays and mortality) and performance-related parameters C1 (the 

rate of reduction in feed intake dependent on rate of immune acquisition), 𝒓𝑾𝑴 (rate of 

protein loss associated with worm mass and 𝒓𝑳𝑩 (rate of protein loss associated with larval 

burden) barely affected the outcomes.  

3.2.2 Performance Outputs 

The maximum reduction in feed intake was significantly impacted by C1 (the rate of 

reduction in feed intake dependent on rate of immune acquisition) and 𝒌𝑬𝑴 (the constant 

relationship between larvaldays and its effect on establishment and mortality). Bodyweights 

were significantly impacted by 𝒌𝑬𝑴, 𝒓𝑾𝑴(rate of protein loss associated with worm mass) 

, and 𝒓𝑳𝑩 (rate of protein loss associated with larval burden) for all infection levels. 

3.3 Model Validation  

The model was tested using published experimental studies, the statistical comparsions  are 

displayed in Table 2. The graphical comparsions for the best and worst fits are shown; for 

worm burden the examples selected were Michel et al. (1970) and Michel and Sinclair 



(1969); for total egg outputs Michel and Sinclair (1969) and for FECs Satrija and Nansen 

(1993) and Wiggin and Gibbs (1989). The remaining comparisons are presented in 

Supplementary Data S3.  

In the majority of cases the comparsion between experimental and model observations 

showed a similar pattern for worm burdens with increasing worm burdens up to a peak 

followed by a decline; this was reflected in the high positive correlation coefficients between 

0.581 and 0.834. A graphical comparison of  model predictions and observations for Michel 

(1970) is presented in Figure 5. Although the CV-RMSE  did not fall within the 95% level, 

suggesting a large amount of dispersal from the observed results, the E value fell well within 

the E95%  suggesting there was no bias and predictions were not consistently over or under 

estimated compared to observed values. The exception to this pattern was Michel and Sinclair 

(1969) in which a faster decline in worm burdens was observed (Figure 6a). This was 

reflected in the lower R value and larger negative E value, showing a consistent 

overestimation by the model.  

Of the aforementioned studies meeting the validation criteria only two provided total egg 

outputs; similarly to the worm burdens the observations revealed total eggs reached a 

maximum early on in the infection and decreased from this point onwards. Model predictions 

were in reasonable agreement with the observed values for both experiment B of Michel 

(1969) (Supplementary Figure S1) and  Michel and Sinclair (1969). The latter showed a close 

correspondance with a high R correlation coefficient of 0.926; however as a consequence of 

the pattern of worm burden the E value showed again a consistent overestimation of results 

by the model (Figure 6b).  

In general the observed pattern of FECs was similar to that of total egg outputs: increasing to 

a peak early on in the infection and then consistently decreasing. The pattern was not as 



evident due to the sampling error incorporated for FEC counting; this was reflected in the R 

values given in Table 2.  An example of a good fit was Satrija and Nansen (1993) in which a 

relatively low CV-RMSE and E value indicate a close fit between results and minimal bias, 

this is represented graphically in Figure 7. However not all experiments provided such strong 

support to the model, in particular Wiggin and Gibbs (1989) for which FEC offered an 

extremely weak R coefficient of -0.059 suggesting the observed pattern was not well 

replicated by model predictions (Figure 8). This was accompanied by an extremely large CV-

RMSE value of 97.1 and a largely positive E value suggesting a gross underestimation by the 

model, which can clearly be seen in Figure 8. However, it can be observed that the FEC 

values reported in Wiggin and Gibbs (1989) are noticeably larger than typical published 

values.  

4 Discussion 
 

The overall aim of this paper was to develop a model that accounted for the interactions 

between O. ostertagi parasitism and first season grazing calves, under UK conditions. 

Although the model was deterministic, it was constructed with the view of developing it into 

a stochastic one, to allow for the investigation of different methods of control of the parasite, 

including selection for host resistance (Laurenson et al., 2012a). Larval intake was considered 

an input to the model, but there are plans to account for parasite populations in the 

environment in the manner similar to Laurenson et al (2012a). 

Although there are a number of models focusing on predicting the epidemiology of O. 

ostertagi (Chaparro and Canziani, 2010; Gettinby and Paton, 1981; Gettinby et al., 1979), 

currently there are only two models that specifically aim to investigate within-host 

interactions between calf host and O. ostertagi. The PARABAN model (Grenfell et al., 

1987a, 1987b; Smith and Grenfell, 1985; Smith et al., 1987) was specifically developed to 



account for the rate of change in parasite populations within hosts and the environment, and 

has been used to investigate the effectiveness of anthelmintic treatment on parasite dynamics. 

This model, however, does not account for the consequences of parasitism on host 

performance and its creators recognised its limitations in this respect (Smith, 1997).  

Ward (2006a) attempted to account for the consequences of parasitism on calf performance 

by developing an animal growth model and by considering the effects of parasitism on host 

feed intake and metabolism. Parasite dynamics were expressed by the same equations that 

formed the basis of the above model (Smith et al., 1987). This implies that parasite 

establishment and fecundity were considered a function of time, as opposed to being a 

function of the development of the immune response (Smith and Grenfell, 1994); the only 

description of calf state used in the model was its bodyweight. A consequence of these 

assumptions would be an under- or over-estimation of calf performance during parasitism, as 

was indeed the case in the validation of the model by Ward (2006b). This could arise, for 

example, by over or under expression of the immune function to parasites as a consequence 

of nutrition (Ploeger et al., 1995; Coop and Kyriazakis, 1999).   

The previously developed models identify the challenges associated with the development of 

a model that predicts the interactions between O. ostertagi and calves. In our model the 

animal state was characterised by calf degree of maturity (current protein mass divided by 

mature protein mass) and level of fatness, consistent with other animal growth models 

(Emmans and Kyriazakis, 2001), and by the cumulative exposure to parasitic challenge 

(larvaldays). The former feature enables simulation of different genotypes. A further 

attraction of describing the calf through these traits is that it is possible to introduce variation 

and co-variation in them and as a consequence to convert a deterministic model into a 

stochastic one (Vagenas et al, 2007c; Laurenson et al, 2012b). The consideration of 

larvaldays enabled to relate the immune response of the animal to be linked to the duration of 



parasite exposure, which is hypothesised to have greater effect on immune acquisition than 

the level of infection per se (Hilderson et al., 1993). Hence this model was able to portray 

differences in rate of immune development at different levels of infection.  

Protein loss, which is the main consequence of gastrointestinal parasite challenge (Taylor et 

al., 1989), was related to current worm mass and larval burden, as opposed to worm burden 

and larval intake (Ward, 2006a). It was not possible to treat the impact of larvae mass 

similarly to worm mass, due to the difficulties in estimating the impact of immunity on larval 

mortality. On entering the host the model immediately discarded any larvae that failed to 

establish hence potentially resulting in an underestimation of the larval burden. Although 

there is currently little quantitative information about parasite-induced protein loss in calves, 

some assumptions were made, consistent with the quantitative estimates of protein loss 

during abomasal parasitism in sheep (Laurenson et al., 2011) and our current estimates of the 

effects of O. ostertagi on calf productivity (Szyszka and Kyriazakis, 2013). Better estimates 

of these relationships will enhance model accuracy.  

The basis of the causal reduction in feed intake during parasitism has been the subject of 

considerable debate (Fox et al., 1989b; Kyriazakis et al., 1998; Laurenson et al., 2011). Feed 

intake reduction during parasitism was related to the rate of change in each of the immune 

parameters: this was in order to relate parasite-induced anorexia to the development of the 

immune response, as has been suggested by Sandberg et al. (2006) and Kyriazakis (2011, 

2014). The rapid recovery in feed intake post administration of anthelmintics in cattle (Bell et 

al., 1990) and other ruminants (Kyriazakis et al., 1996), suggests that anorexia is not a 

consequence of pathology, but is inextribaly linked to the stimulation of the immune response 

caused by the exposure to the parasites. Feed intake recovers when the immune reponse is 

fully developed (Kyriazakis et al., 1996, Sandberg et al., 2006); however it was assumed that 

there would be no compensatory increase in feed intake and perfomance (Kyriazakis and 



Houdijk, 2007). The existence of such compensatory response would affect the predictions of 

the model in terms of calf performance, but not its parasitological outputs.  

The assumptions made about within host parasite populations and the interactions between 

host and parasite lead to a number of model behaviours. The rate of reduction in worm 

numbers was more rapid for higher infection pressures; this was a reflection of the model 

assumption that the development of immunity was dependent on the cumulative exposure to 

larvae. Worm burdens never reached zero even when immunity had developed in full, 

consistently with the idea of incomplete and slow development of immunity to O. ostertagi in 

relation to other parasite species (Hilderson et al., 1993; Klesius, 1988). We did not observe a 

relationship between infection pressure and the plateau of within host worm burden, as 

suggested by Cattadori et al (2005); this was a reflection of the absence of an epidemiological 

component in our model. 

Anorexia became evident around the same time for all infection levels; this was a result of a 

threshold level of immune acquisition achieved at a similar time for each challenge dose, 

consistent with Szyszka and Kyriazakis (2013). In addition it has been shown that feed intake 

is not affected during the stage of larval development (Fox et al, 1989a; Michel, 1969; 

Szyszka and Kyriazakis, 2013). Feed intake also began to recover earlier for higher infection 

levels. This was a reflection of the assumption for faster immune acquisition and a higher 

desired intake to meet increased nutrient demands; more heavily parasitized calves must have 

larger requirements for repair and immunity (Sandberg et al, 2006). The total duration of 

anorexia was shortest for larger infection levels with no clear recovery in feed intake 

occurring for the lower levels. This is consistent with Herlich (1980) who found that the 

duration of anorexia seemed to be unrelated to the size of worm burden across cattle age 

groups infected with O. ostertagi, with cattle of 24 months showing large worm burdens but 

without signs of anorexia. In contrast Herlich (1980) concluded that of the age groups 



considered (2, 4/5, 12 and 24 months) only the 2 month old calves appeared to show 

‘resistance’ to parasitic infection, implying the highest development of immunity, and 

coincidentally the highest incidence of anorexia. 

A sensitivity analysis was conducted to identify parameters of key influence; the LHS was 

chosen as this method attempts to cover the widest space of possible parameter combinations. 

As far as we are aware, this has been the first attempt to apply the methodology in the 

validation of parasitological models. The approach requires fewer simulations than the Monte 

Carlo method as it is guaranteed to cover more uniformly the complete range of possibilities. 

Conversely a Monte Carlo simulation, which selects values at random, may generate clusters 

of similar parameter combinations while failing to probe other important regions of the 

parameter space. 

In order to place any confidence in the model it was necessary to validate it against published 

literature. Parasitological traits were validated by comparing observed and simulated outputs 

for worm burdens, total egg outputs and FEC. In general model predictions showed close 

correlations to observations for worm burdens and total egg outputs, although relatively large 

CM-RMSE values suggested high levels of individual variation. In most cases FECs also 

showed a good fit, although these were rather more variable as a result of disparities in 

patterns of feed intake and faecal consistency (Vagenas et al, 2007b). Experiments will 

always be restricted by the number of animals involved; simulations studies are not limited 

by this, but can take into account between animal variation. Of the relevant studies many 

were performed a number of years ago; since then calves have been selected for performance 

traits, but little to no selection for resistance appears to have taken place (Prakash, 2009). 

Owing to a lack of experimental studies investigating the effect of sub-clinical challenge 

levels on calf DM intake it was not possible to validate performance; inference was made 

from bodyweight losses comparatively to control animals. A general review of the literature 



on feed intake during O. ostertagi infection showed varied food intake patterns between 

studies (Szyszka and Kyriazakis, 2013; Fox et al, 1989a). It has been observed that duration 

and magnitude of parasite-induced anorexia are both strain dependent with a variance of up to 

8 days between strains (Herlich et al., 1984). 

The limitations of the model predictions point towards the need to develop a population 

model, as opposed to a deterministic model to account for calf – O. ostertagi interactions. To 

account for discrepancies between studies and for variation within them resulting from calf 

genetic variation, a stochastic herd-based model needs to be developed. Vagenas et al. 

(2007c) and Laurenson et al. (2012b) have described the challenges associated with this task 

for the development of a simulation model that accounted for the interactions between sheep 

and T. circumcincta. Nevertheless, such a development is a necessary step to address the 

consequences of management on the parasitism of a population of calves, especially given the 

move towards the development of targeted selective treatments in order to reduce the rate of 

selection for anthelmintic resistance (Charlier et al., 2014) whereby individuals are treated 

only when a given trait crosses a threshold level. 

5 Conclusions 
A dynamic, deterministic model to account for the interactions between calves and O. 

ostertagi has been developed. Although the model was developed for a specific calf genotype 

given ad libitum access to high quality grass, the model is able to apply to other genotypes 

and be extended for different nutritional scenarios. Comparisons of model outputs to 

experimental observations highlighted both model strengths and weaknesses. Reliance of the 

model on expressing the development of the immune responses affecting parasite populations 

within the host, points towards the need to collect further data to define such relationships. In 

this respect the model has a heuristic value. A major strength of the model is its ability to be 



converted into a population model and hence be used as a tool to investigate the 

consequences of parasitism in a group of calves subjected to different management 

treatments.   
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Figure Legends 

 

Figure 1: A schematic description of the parasite-host interactions. The rectangular boxes and 

solid lines indicate the flow of ingested feed resources; the oval boxes indicate the host-parasite 

interactions and the hexagonal boxes represent the the key measurabe stages of the parasite 

life-cycle. Host immune response is assumed to lead to parasite-induced anorexia (broken line).  
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Figure 2: Predicted worm burdens (a), sampled daily faecal egg counts (FEC) (b) and daily 

faecal egg outputs (c) produced over time in calves administered one of 3 different infection 

doses of Ostertagia ostertagi L3 larvae: 3,500, 7,000 and 14,000 L3/day over a 200 day period. 

The FEC were subject to a random sampling error owing to external factors.  

  



 

Figure 3: The predicted daily feed intake (a) and total relative bodyweight losses (in 

comparison to uninfected controls) (b) over time in calves administered 3 different infection 

levels of Ostertagia ostertagi L3 larvae: 3,500, 7,000 and 14,000 L3/day.  

  



 

Figure 4: The sensitivity ratio of each of the 5 outputs considered (value and time of peak 

worm burden, peak faecal egg count, peak of reduction in feed intake and final bodyweight) 

in relation to each of the model parameters considered (1-12) when a calf was infected with 

3,500 L3/d. The parameters were firstly the immune parameters (1-9): the combined effect of 

establishment and mortality on adult worm burdens (maximum, minimum and 

rate):𝐸𝑀𝑚𝑎𝑥(1),   𝐸𝑀𝑚𝑖𝑛(2) , 𝑘𝐸𝑀 (3); the effect of mortality of adult worms (maximum, 

minimum and rate):  𝜇𝑚𝑎𝑥(4),  𝜇𝑚𝑖𝑛(5), 𝑘𝜇(6); the fecundity (eggs) of female adult 

worms(maximum, minimum and rate): 𝐹𝑚𝑎𝑥  (7),  𝐹𝑚𝑖𝑛 (8), kF (9). The performance 

parameters (9-12) considered were; the rate of reduction in feed intake dependent on rate of 

immune acquisition: 𝐶1 (10); the rate of protein loss caused by adult worms 𝑟𝑊𝑀 (11) and 

by larvae 𝑟𝐿𝐵 (12). The sensitivity analysis was conducted by the Latin hypercube sampling 

technique. 

  



 

Figure 5: A comparison of the observations (●) by Michel (1970) to simulated predictions (o) 

for worm burdens produced by Ostertagia ostertagi infections of a)200 L3/d; b)340 L3/d; c)570 

L3/d; d)950 L3/d; e)1600 L3/d. Each measurement was taken from 5 calves for each point. 

  



 

Figure 6: A comparison of experimental observations (●) by Michel and Sinclair(1969) to 

simulated predictions (o) for a) worm burdens and b) total eggs counts produced by an infection 

level of 1500 L3/d. Each point is based on measurements from one calf, with the exception of 

day 63 which is based on measurements from 2 calves. 

  



 

Figure 7: A comparison of experimental observations (●) by Satrija and Nansen (1993) to 

simulated predictions (o) for faecal egg outputs per gram of fresh faeces resulting from a 

weekly infection of 1,250 larvae. Each measurement was taken for 6 calves 

  



 

Figure 8: A comparison of experimental observations (●) by Wiggin and Gibb (1989) to 

simulated predictions (o) for faecal egg outputs per gram of fresh faeces produced by a weekly 

infection of 30,000 larvae. Each measurement was taken for 12 calves. 

  



 

Table 1: The range of model outcomes for the three parasitological outputs of peak worm 

burden, timing of peak worm burden, and final bodyweight are shown for simulations of the 

model run at three challenge levels of 3,500, 7,000 and 14,000 L3/d. The simulations for each 

challenge level were run using parameter combinations generated using the Latin hypercube 

sampling method whereby combinations were randomly selected to best cover the area of 

possible outcomes. Each 

 

  

Larval Challenge 

(L3/day) 

Peak worm burden Time of  peak worm 

burden (days) 

Final Bodyweight 

(kg) 

 

3,500 

 

0.146-2.06 x105 

 

31-132 

 

465-564 

7,000 0.241-4.15  x105 29-112 463-563 

14,000 0.389-5.06  x105 27-96 463-563 



Table 2: The outcomes of statistical analyses used to assess goodness-of-fit between predictions and 

observed and experimental results of worm burdens, total egg outputs and faecal egg counts. Values 

for the R correlation coefficient, the coefficient of variation of the root mean square error (CV RMSE) 

and the relative error (E) are all given to 3 significant figures. The 95% confidence interval of 

experimental data is estimated where possible; in some cases standard deviations were not provided 

as only one calf was used for each measurement. 

N/A- not applicable 

  

Measurement output Source R CV RMSE 
(%) 

CV 
RMSE95% CI 

E (%) E95% 

Worm burdens 
 

Michel (1970) 0.834 39.2 36.1 3.58 24.3 

Worm burdens Michel (1969) 
Experiment B 

0.728 43.0 N/A -4.30 N/A 

Total eggs 
 

 0.684 61.4 N/A -16.7 N/A 

Worm burdens 
 

Michel and Sinclair 
(1969) 

0.581 27.6 N/A -28.9 N/A 

Total eggs 
 

 0.926 28.4 N/A -45.4 N/A 

Faecal Egg Counts Claerebout et al. 
(1996) 

0.728 71.3 N/A 67.2 N/A 

Faecal Egg Counts Forbes et al. 
 (2009) 

0.671 56.6 N/A 48.7 N/A 

Faecal Egg Counts Hilderson et al. 
(1993) 

0.368 80.5 N/A -8.28 N/A 

Faecal Egg Counts Hilderson et al. 
(1995) 

0.798 62.1 N/A 66.2 N/A 

Faecal Egg Counts Mansour et al. 
(1992) 

0.654 35.9 N/A -13.2 N/A 

Faecal Egg Counts 
 

Satrija & Nansen 
(1993) 

0.699 29.1 N/A -17.7 N/A 

Faecal Egg Counts 
 

Wiggins & Gibbs 
(1989) 

-0.0590 97.1 N/A 65.0 N/A 

Faecal Egg Counts 
 

Xiao & Gibbs 
 (1992) 

0.813 64.8 N/A 65.2 N/A 



 

Figure S1: Worm burden (a), daily faecal egg output (b), daily food intake (c) and total 

relative bodyweight loss (in comparison to uninfected controls, losses are cumulative over 

time) (d) incurred over time in calves given a total of 210,000 Ostertagia ostertagi larvae 

over three weeks administered either daily (10,000 per day trickle challenge), as three weekly 

doses of 70,000, or as a single dose at the start of the period. 

 

Figure S2: A comparison of experimental observations (●) by Michel (1969) experiment B 

to simulated predictions (o) for worm burdens resulting from infection doses of a) 500 larvae 

per day; b) 1000 larvae per day; c) 1500 larvae per day and total eggs per day resulting from 

infection levels of d) 500 larvae per day; e) 1000 larvae per day; f) 1500 larvae per day. Each 

experimental data point is based on measurements from a single calf. 

 

Figure S3: A comparison of experimental observations (●) by Claerebout et al. (1996) to 

simulated predictions (o) for faecal egg outputs per gram of fresh faeces produced by an 

infection level of 20,000 larvae per week, administered in 3 doses, for 21 weeks. Each 

measurement was taken for 6 calves. 

 

Figure S4: A comparison of experimental observations (●) by Forbes et al. (2009) to 

simulated predictions (o) for faecal egg outputs per gram of fresh faeces produced by an 

infection level of 70,000 larvae per week, administered in 3 doses, for 8 weeks. Each 

measurement was taken for 5 calves. 

 



Figure S5: A comparison of experimental observations (●) by Hilderson et al. (1993) to 

simulated predictions (o) for faecal egg outputs per gram of fresh faeces produced by 

infection levels of a) 5,000 larvae per week; b) 10,000 larvae per week; c) 20,000 larvae per 

week; d) 40,000 larvae per week, all administered in 3 doses a week for 17 weeks. Each 

measurement was taken for 4 calves. 

 

Figure S6: A comparison of experimental observations (●) by Hilderson et al. (1995) to 

simulated predictions (o) for faecal egg outputs per gram of fresh faeces produced an 

infection level of 20,000 larvae per week, administered in 3 doses, for 17 weeks. Each 

measurement was taken for 5 calves. 

 

Figure S7: A comparison of experimental observations (●) by Mansour et al. (1992) to 

simulated predictions (o) for faecal egg outputs per gram of fresh faeces produced by an 

infection level of 3,000 larvae administered every other day for 6 weeks. Each measurement 

was taken for 6 calves. 

 

Figure S8: A comparison of experimental observations (●) by Xiao and Gibb (1992) to 

simulated predictions (o) for faecal egg outputs per gram of fresh faeces produced by a 

weekly infection of 10,000 larvae for 14 weeks. Each measurement was taken for 5 calves. 

 


