364 research outputs found

    Navigating Integration: A Grounded Theory of Practicing Clinicians\u27 Experiences Integrating Neuroscience in their Mental Health Clinical Practice

    Get PDF
    The purpose of this study was to generate a grounded theory from practicing clinicians’ experiences integrating neuroscience in their mental health clinical practice. The research consisted of interviews with eight practicing clinicians across Minnesota. The qualitative study design relied upon the Corbin and Strauss (2015) Grounded Theory and theoretical sampling. Participants in this study described taking complex neuroscience information and translating it into user-friendly concepts and applying clinical interventions that affect the mind-body symbiotic relationship, providing a holistic way to address mental and physical health. The participants integrated neuroscience knowledge alongside other psychotherapy theories and utilized psychoeducation approaches to further the movement toward mainstream knowledge and understanding of the connection between biological factors and emotional health. There were similarities in the findings of this research study and how neurocounseling has been defined by Russell-Chapin (2016, p. 93) as, “the integration of neuroscience into the practice of counseling, by teaching and illustrating the physiological underpinnings of many of our mental health concerns.” Exploration of this integrative clinical approach, connections to the literature, and implications of the findings are discussed

    Investigating transition state resonances in the time domain by means of Bohmian mechanics: The F+HD reaction

    Get PDF
    In this work, we investigate the existence of transition state resonances on atom-diatom reactive collisions from a time-dependent perspective, stressing the role of quantum trajectories as a tool to analyze this phenomenon. As it is shown, when one focusses on the quantum probability current density, new dynamical information about the reactive process can be extracted. In order to detect the effects of the different rotational populations and their dynamics/coherences, we have considered a reduced two-dimensional dynamics obtained from the evolution of a full three-dimensional quantum time-dependent wave packet associated with a particular angle. This reduction procedure provides us with information about the entanglement between the radial degrees of freedom (r,R) and the angular one (\gamma), which can be considered as describing an environment. The combined approach here proposed has been applied to study the F+HD reaction, for which the FH+D product channel exhibits a resonance-mediated dynamics.Comment: 12 pages, 9 figure

    Computing periodic orbits using the anti-integrable limit

    Full text link
    Chaotic dynamics can be effectively studied by continuation from an anti-integrable limit. Using the Henon map as an example, we obtain a simple analytical bound on the domain of existence of the horseshoe that is equivalent to the well-known bound of Devaney and Nitecki. We also reformulate the popular method for finding periodic orbits introduced by Biham and Wenzel. Near an anti-integrable limit, we show that this method is guaranteed to converge. This formulation puts the choice of symbolic dynamics, required for the algorithm, on a firm foundation.Comment: 11 Pages Latex2e + 1 Figure (eps). Accepted for publication in Physics Lettes

    Modeling Collisionless Matter in General Relativity: A New Numerical Technique

    Get PDF
    We propose a new numerical technique for following the evolution of a self-gravitating collisionless system in general relativity. Matter is modeled as a scalar field obeying the coupled Klein-Gordon and Einstein equations. A phase space distribution function, constructed using covariant coherent states, obeys the relativistic Vlasov equation provided the de Broglie wavelength for the field is very much smaller than the scales of interest. We illustrate the method by solving for the evolution of a system of particles in a static, plane-symmetric, background spacetime.Comment: 6 pages, 3 postscript figures, submitted to Physical Review

    Effects of Large-Scale Convection on p-mode Frequencies

    Full text link
    We describe an approach for finding the eigenfrequencies of solar acoustic modes (p modes) in a convective envelope in the WKB limit. This approximation restricts us to examining the effects of fluid motions which are large compared to the mode wavelength, but allows us to treat the three-dimensional mode as a localized ray. The method of adiabatic switching is then used to investigate the frequency shifts resulting from simple perturbations to a polytropic model of the convection zone as well as from two basic models of a convective cell. We find that although solely depth-dependent perturbations can give frequency shifts which are first order in the strength of the perturbation, models of convective cells generate downward frequency shifts which are second order in the perturbation strength. These results may have implications for resolving the differences between eigenfrequencies derived from solar models and those found from helioseismic observations.Comment: 27 pages + 6 figures; accepted for publication in Ap

    Classical and Quantum Transport Through Entropic Barriers Modelled by Hardwall Hyperboloidal Constrictions

    Get PDF
    We study the quantum transport through entropic barriers induced by hardwall constrictions of hyperboloidal shape in two and three spatial dimensions. Using the separability of the Schrodinger equation and the classical equations of motion for these geometries we study in detail the quantum transmission probabilities and the associated quantum resonances, and relate them to the classical phase structures which govern the transport through the constrictions. These classical phase structures are compared to the analogous structures which, as has been shown only recently, govern reaction type dynamics in smooth systems. Although the systems studied in this paper are special due their separability they can be taken as a guide to study entropic barriers resulting from constriction geometries that lead to non-separable dynamics.Comment: 59 pages, 22 EPS figures

    A mechanistic and experimental study on the diethyl ether oxidation

    Get PDF
    International audienceThis work presents the results of the theoretical investigations on autoxidation process of diethyl ether (DEE), a chemical largely used as solvent in laboratories and considered to be responsible for various accidents. Based on Density Functional Theory calculations, the aims of this study were the identification of all the most probable reaction paths involved in DEE oxidation (at ambient temperature and under conditions that reflect normal storage conditions) and the characterization of products and all potential hazardous intermediates, such as peroxides. Results indicate that industrial hazards could be related to hydroperoxide formation and accumulation during the chain propagation step. A detailed kinetics model of DEE oxidation in the gas phase was then developed from all energetic and kinetics parameters collected during the mechanistic study. Outputs of the kinetics model, in terms of time of evolution of product concentrations, have been then compared with the experimentally measured concentration of products (notably hydroperoxides) issued from tests on DEE oxidation conducted under accelerated conditions with autoclaves

    Phenol Nitration Induced by an {Fe(NO)\u3csub\u3e2\u3c/sub\u3e}\u3csup\u3e10\u3c/sup\u3e Dinitrosyl Iron Complex

    Get PDF
    Cellular dinitrosyl iron complexes (DNICs) have long been considered NO carriers. Although other physiological roles of DNICs have been postulated, their chemical functionality outside of NO transfer has not been demonstrated thus far. Here we report the unprecedented dioxygen reactivity of a N-bound {Fe(NO)2}10 DNIC, [Fe(TMEDA)(NO)2] (1). In the presence of O2, 1 becomes a nitrating agent that converts 2,4,-di-tert-butylphenol to 2,4-di-tert-butyl-6-nitrophenol via formation of a putative iron-peroxynitrite [Fe(TMEDA)(NO)(ONOO)] (2) that is stable below −80 °C. Iron K-edge X-ray absorption spectroscopy on 2 supports a five-coordinated metal center with a bound peroxynitrite in a cyclic bidentate fashion. The peroxynitrite ligand of 2 readily decays at increased temperature or under illumination. These results suggest that DNICs could have multiple physiological or deleterious roles, including that of cellular nitrating agents

    Identification of copy number variants from exome sequence data

    Get PDF
    Background With advances in next generation sequencing technologies and genomic capture techniques, exome sequencing has become a cost-effective approach for mutation detection in genetic diseases. However, computational prediction of copy number variants (CNVs) from exome sequence data is a challenging task. Whilst numerous programs are available, they have different sensitivities, and have low sensitivity to detect smaller CNVs (1–4 exons). Additionally, exonic CNV discovery using standard aCGH has limitations due to the low probe density over exonic regions. The goal of our study was to develop a protocol to detect exonic CNVs (including shorter CNVs that cover 1–4 exons), combining computational prediction algorithms and a high-resolution custom CGH array. Results We used six published CNV prediction programs (ExomeCNV, CONTRA, ExomeCopy, ExomeDepth, CoNIFER, XHMM) and an in-house modification to ExomeCopy and ExomeDepth (ExCopyDepth) for computational CNV prediction on 30 exomes from the 1000 genomes project and 9 exomes from primary immunodeficiency patients. CNV predictions were tested using a custom CGH array designed to capture all exons (exaCGH). After this validation, we next evaluated the computational prediction of shorter CNVs. ExomeCopy and the in-house modified algorithm, ExCopyDepth, showed the highest capability in detecting shorter CNVs. Finally, the performance of each computational program was assessed by calculating the sensitivity and false positive rate. Conclusions In this paper, we assessed the ability of 6 computational programs to predict CNVs, focussing on short (1–4 exon) CNVs. We also tested these predictions using a custom array targeting exons. Based on these results, we propose a protocol to identify and confirm shorter exonic CNVs combining computational prediction algorithms and custom aCGH experiments
    corecore