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Abstract

Cellular dinitrosyl iron complexes (DNICs) have long been considered NO carriers. Although
other physiological roles of DNICs have been postulated, their chemical functionality outside of
NO transfer has not been demonstrated thus far. Here we report unprecedented dioxygen reactivity
of an N-bound {Fe(NO),}10 DNIC, [Fe(TMEDA)(NO),] (1). In the presence of Oy, 1 becomes a
nitrating agent that converts 2,4,-di-tert-butylphenol to 2,4-di-tert-butyl-6-nitrophenol via
formation of a putative iron-peroxynitrite [Fe(TMEDA)(NO)(ONOO)] (2) that is stable below —80
°C. Iron K-edge X-ray absorption spectroscopy on 2 supports a five-coordinated metal center with
a bound peroxynitrite in a cyclic bidentate fashion. The peroxynitrite ligand of 2 readily decays at
increased temperature or under illumination. These results suggest that DNICs could have multiple
physiological or deleterious roles, including that of cellular nitrating agents.

Dinitrosyl iron complexes (DNICs), Chart 1, are naturally occurring iron species that are
generated from the reactions of nitric oxide (NO) with cellular nonheme iron species such as
iron-sulfur clusters.1:2 A series of S- or N-bound DNICs have been reported?—® since the
initial discovery’ of a cysteine-bound DNIC formulated as [Fe(NO),(SR)»] ™, an
{Fe(NO),}° species in the Enemark-Feltham notation.® Although EPR-active S-bound
{Fe(NO),}° DNICs are more common, N- or O- bound DNICs have been also observed.®

Several physiological roles of DNICs have been suggested, including storage and transfer of
NO.1:10 However, the nature of the chemistry that allows DNICs to play these physiological
roles is not well understood. A notable recent report from the Lippard group suggests that
the NO-donating ability of an N-bound DNIC might be {Fe(NO),}°/{Fe(N0),}1° redox-
dependent.® While such a proposal offers important chemical insights, we were intrigued by
the highly reducing nature of {Fe(NO),}9 DNICs, which may suggest a rich chemistry
between these motifs and oxidants such as O,. Such reactivity could shed light on
undiscovered physiological or deleterious roles of DNICs. Herein, we describe
unprecedented dioxygen reactivity of an N-bound {Fe(NO),}1° DNIC, [Fe(TMEDA)(NO)]
(1), where TMEDA = N,N,N’,N'-tetramethylethylenediamine (Chart 1), and we demonstrate
the formation of an intermediate that leads to nitration of phenol.

Eunsuk_Kim@brown.edu.

Supporting Information Available: Experimental details concerning spectroscopy, reaction product characterization and quantification,
isotope labeling, electrochemistry, and nitrite detection. This material is available free of charge via the Internet at http://pubs.acs.org.
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Compound 1 was synthesized as previously reported by Hung et al.>d Bubbling of O,
through a solution of 1 in dichloromethane at —80 °C leads to the formation of an EPR-
silent, dark purple complex with absorption bands at 460 (¢ = 420 M~1cm™1) and 560 nm (&
=580 M~1ecm™1), Figure 1A. This purple complex is stable below —80 °C, but it
decomposes to an orange, insoluble precipitate upon warming.11:12 IR monitoring of this
Oo-reaction also shows the generation of a new quasi-stable species with the appearance of
two new vyo peaks at 1589 and 1805 cm™~1 concomitant with the disappearance of the vyo
of 1 at 1630 and 1687 cm™1 (Figure 1B).13 No other significant change occurs in the mid-
frequency region of the IR spectra. This transformation is very different from what was
observed by Tonzetich et al.b in the case of another N-bound {Fe(NO),}1° DNIC with a
monoanionic bidentate B-diketiminate ligand. In that study, air exposure led to the one-
electron oxidation of the {Fe(NO),}12 DNIC to an EPR-active {Fe(NO),}° DNIC, which
was also signified by >130 cm™~1 upshifts of the two IR-active NO stretching frequencies.
Here, the intermediate generated from 1/0, is EPR silent and it exhibits an up- (1805 cm™1)
and a downshifted (1589 cm™1) NO band. These data are inconsistent with the simple one-
electron oxidation of 1.14 The possibility of generating a five-coordinate superoxide (O,")
adduct, [Fe(TMEDA)(NO),(05,)], has been considered. Although such a species is not
known, an iodide (17) analogue, [Fe(TMEDA)(NO),(1)], has been reported to have two
upshifted vyo frequencies higher than 1700 cm~11% which is again different from what we
observe in the 1/0, reaction.16 Interestingly, the vyo at 1589 cm™1 closely matches those
from known trans-peroxynitrite species, O=NOOM, where M = Li, Na, K.17 These IR and
EPR characteristics, along with the EXAFS data (vide infra), led us to consider the
intermediate to be a peroxynitrite bound iron mononitrosyl species, [Fe(TMEDA)(NO)
(ONOO)] (2).18

Iron K-edge X-ray absorption spectroscopy was used to further probe complex 2.
Comparison of the edge energies of 1 and 2 shows a shift by +1.8(4) eV upon O, exposure
to cold solutions of 1 (Figure 2A), which is consistent with the formal oxidation of 1 by 1
electron. The Fe 1(s) — 3(d) transition found in the pre-edge region of 2 has a peak area
slightly larger than that corresponding to 1 (35(1) vs. 36(1) eV% relative to the edge height).
This is most consistent with 2 having an Fe-center contained in a non-centrosymmetric
coordination environment. The EXAFS region for 2 is best modeled as a five coordinate Fe-
species with a coordinated bidentate OoNO™ moiety (Figure 2B). We find strong multiple-
scattering (MS) pathways originating from this cyclic Oo,NO™ ligand (average N/O distance
1.91(1) A; see inset Figure 2B). In addition, strong MS pathways are also found originating
from the NO ligand (1.67(1) A). Two additional N-scatters derived from the TMEDA ligand
are also observed. The thermal decomposition product resulting from warming of 2 to room
temperature yields a further shift in the edge energy of +2.6(3) eV, consistent with the
production of an Fe2*/3* species (Figure 2A).

Attempts at characterization of 2 by resonance Raman spectroscopy were hampered by
photosensitivity. The decomposition of 2 with white light was monitored at —90 °C by UV-
Vis spectroscopy but it failed to reveal new absorption features (Figure S5). In the IR,
continuous white-light illumination of 2 leads to the progressive and irreversible bleaching
of the 1581 and 1807 cm~1 bands with concomitant appearance of a single band at 1744
cm~1 (Figure 3). The loss of the IR band at 1581 cm™ and the appearance of a new vy at
1744 cm~1 suggest that illumination of 2 might lead to the formation of a new iron-
mononitrosyl species after photochemistry at the peroxynitrite ligand. Like 2, the
photoproduct is EPR silent at 10 K (data not shown). While the nature of the photoproduct
remains in doubt,19 the photoactive behavior of 2 is reminiscent of [Co(CN)5(ONOQ)]3~,
where photolysis destroys the coordinated ONOO~.20
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The presence of peroxynitrite is often indicated by oxidation and/or nitration chemistry
especially with phenolic substrates.2! When one equiv. of 2,4-di-tert-butylphenol (DBP) is
added to 2 and the reaction mixture is subsequently warmed to room temperature, 2,4-di-
tert-butyl-6-nitrophenol (NO,-DBP) is observed along with the oxidative coupling product
2,2'-dihydroxy-3,3',5,5'-tetra-t-butyl-1,1’biphenyl (Scheme 1).22 These reaction products do
not form when DBP is added after warming the solution of 2 to room temperature,
signifying that intermediate 2 is a crucial species in phenol nitration and oxidation. At room
temperature, 2 is too unstable to be monitored by regular UV-Vis spectroscopy, although a
glimpse of purple color can be seen momentarily. Despite the short lifetime of 2 at room
temperature, when O, is added to a mixture of 1 and DBP (1 equiv) at room temperature
nitration chemistry still occurs, yielding NO,-DBP, while only a small amount (2%) of the
oxidative coupling product is generated. This indicates that 1/0O, induces nitration much
more efficiently than oxidation at room temperature.23 When 180, is used, approximately 50
% of 180 atom incorporates into the substrate. GC-MS analysis of NO,-DBP displays a
distribution of 80,N-DBP, 18/160,N-DBP, and 160,N-DBP in a ratio of 30(2)%, 48(1)%,
and 22(2)%.12 Although the mechanistic investigation of phenol nitration by 2 is beyond the
scope of this report, the O atom isotope distribution in NO,-BDP warrants future
mechanistic studies and likely involves the cleavage of peroxynitrite and participation of the
other NO.24

Nitration of biological phenols, such as seen in protein tyrosine nitration (PTN), is an
important posttranslational modification associated with various pathological conditions
including inflammatory, neurodegenerative, and cardiovascular diseases.2> Although
elusive, the current view?5d of PTN suggests that different types of cellular nitrating agents
could be responsible for its specificity at various sites. Two major ways to generate PTN are
known.2% One is through peroxynitrite (ONOQ™) that is formed from nitric oxide (NO) and
superoxide (O27). The other involves reactions of heme peroxidases with hydrogen peroxide
and nitrite (NO, ™). The reactivity of the {Fe(NO),}0 DNIC we report herein suggests that
cellular DNICs could provide a new route to generate PTN; the DNIC derived peroxynitrite
moiety in 2 may directly nitrate the phenol or biological tyrosine (via homolytic cleavage to
*O(H) + *NO>) or act as a *NO» generator (where two equiv. may lead to ArOH nitration).
21,25 The results also agree with several literature examples of the oxidation chemistry of
metal-nitrosyls,26 though observation of metal-peroxynitrite is rare.26d |t is conceivable
that small molecule metal species such as DNICs act as mobile nitrating agents in cells.

In summary, we have described unprecedented O, reactivity of an {Fe(NO),}10 iron-
dinitrosyl complex [Fe(TMEDA)(NO),] (1). In the presence of O,, 1 becomes a potent
nitrating agent via formation of a putative iron-peroxynitrite species. The O, reactivity of 1
demonstrated here suggests that the physiological functions of DNICs are not limited to NO
storage and transfer and deserve further studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synthesis of the intermediate usingl5NO shows clear IR shift to lower energy supporting the vyo
assignments and formation of putative [Fe(TMEDA)(NO)(ONOO)] (2) (vide infra).12

14. Reversible {Fe(NO),}9/10 redox behavior of 1 is observed in cyclic voltammetry, with E1jo =

15.

16.

17.

—0.527 V (vs. ferrocene/ferrocenium). Chemical oxidation of 1 by |5 has been shown to yield a
five-coordiate compound [Fe(TMEDA)(NO)»I].15 Attempts to isolate a four-coordinate
counterpart, [Fe(TMEDA)(NO)»,]+, were not successful probably due to its strong preference to be
five-coordinate, as was previously discussed.1®
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Figure 1.
UV-Vis (A) and IR (B) spectra of [Fe(TMEDA)(NO),] (1) (black dashed line), and of the
putative intermediate [Fe(TMEDA)(NO)(ONOO)] (2) (red) at —80 °C in dichloromethane.
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Figure 2.

A) XANES region of the XAS for 1 (green), 2 (red) and the thermal decomposition product
(black). B) Experimental (red solid line) and simulated (blue dashed line) magnitude FT k3
EXAFS data for 2. Best fit includes: shell #1: 2 N scatterers, r = 2.14(1) A, 62 = 0.003(2)
AZ; O,NO shell: 1 O,NO scatterer, r; = 1.91(1) A, rp = 1.91 A (restrained), 62 = 0.002(1)
A2, ¢ = 98(7)°; NO shell: 1 NO scatterer, r = 1.67(1) A; 62 = 0.008(2) A%; 6 = 192(2)°. E, =
7120.4 V. g2 = 0.57.
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Figure 3.

IR spectra of a [Fe(TMEDA)(NO)(ONQO)] (2) in CH,Cl, at 11 K before (black) and after
illumination (red). The dark minus illuminated difference spectrum is also shown (blue).
Sharp IR bands are from dichloromethane.
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Chart 1.
Dinitrosyl iron complexes (DNICs)
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