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a b s t r a c t

We study the quantum transport through entropic barriers
induced by hardwall constrictions of hyperboloidal shape in two
and three spatial dimensions. Using the separability of the Schrö-
dinger equation and the classical equations of motion for these
geometries, we study in detail the quantum transmission probabil-
ities and the associated quantum resonances, and relate them to
the classical phase structures which govern the transport through
the constrictions. These classical phase structures are compared to
the analogous structures which, as has been shown only recently,
govern reaction type dynamics in smooth systems. Although the
systems studied in this paper are special due their separability they
can be taken as a guide to study entropic barriers resulting from
constriction geometries that lead to non-separable dynamics.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

A system displays reaction type dynamics if its phase space possesses bottleneck type structures.
Such a system spends a long time in one phase space region (the region of ‘‘reactants”) and occasion-
ally finds its way through a bottleneck to another phase space region (the region of ‘‘products”) or vice
versa. This type of dynamics does not only characterize chemical reactions but is of great significance
in many different fields of physics and biology. Examples include ballistic electron transport problems
[1], surface migration of atoms in solid state physics [2], ionization of Rydberg atoms in electromag-
netic fields [3,4], and on a macroscopic scale, the capture of moons near giant planets and asteroid mo-
tion [5,6].
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In systems where the dynamics is smooth and Hamiltonian, the phase space bottlenecks eluded to
above are induced by saddle-center-� � �-center type equilibrium points, i.e. equilibrium points at
which the matrix associated with the linearization of Hamilton’s equations has one pair of real eigen-
values, �k, and otherwise purely imaginary eigenvalues �ixk, k ¼ 2; . . . ; f , where f is the number of
degrees of freedom. In chemistry terms, there is a ‘‘transition state” associated with the bottleneck,
i.e. a state the system has to pass ‘‘through” on its way from reactants to products. The most efficient
and commonly used approach to compute reaction rates is transition state theory, where the main idea
is to place a dividing surface in the transition state region and compute the reaction rate from the flux
through the dividing surface (for recent references, see the perspective paper [7]). This approach has
major computational benefits over other methods to compute the reaction rate because the latter typ-
ically require the integration of trajectories in order to decide whether they are reactive (i.e. extend
from reactants to products, or vice versa) or non-reactive (i.e. stay in the regions of products or reac-
tants). Rather than this global information about trajectories, which to obtain is computationally
expensive, transition state theory requires only local information about the phase space structures
near the saddle-center-� � �-center equilibrium point – namely the construction of the dividing surface.
However, in order to be useful and not to overestimate the reaction rate the dividing surface needs to
have the property that it divides the phase space into a reactants and a products region in such a way
that it is crossed exactly once by reactive trajectories and not crossed at all by non-reactive trajecto-
ries. The question how to construct such a dividing surface for systems with an arbitrary number of
degrees of freedom has posed a major problem for many years, and has been solved only recently
based on ideas from dynamical systems theory (see [4] and the recent review paper [8] with the ref-
erences therein). The main building block in this construction is formed by a so called normally hyper-
bolic invariant manifold (NHIM) which is a manifold that is invariant under the dynamics (i.e.
trajectories with initial conditions in the manifold stay in the manifold for all time) and is unstable
in the sense that the expansion and contraction rates associated with the directions tangent to the
manifold are dominated by those expansion and contraction rates associated with the directions
transverse to the manifold [9]. The NHIM is the mathematical manifestation of the transition state.
In fact, the NHIM which is a sphere of dimension 2f � 3 (with f again denoting the number of degrees
of freedom) can be viewed to form the equator of the dividing surface which itself is a sphere of
dimension 2f � 2 located in a ð2f � 1Þ-dimensional energy surface if it has an energy slightly above
the energy of the equilibrium point. The NHIM separates the dividing surface into two hemispheres.
All forward reactive trajectories (trajectories evolving from reactants to products) cross one of these
hemispheres; all backward reactive trajectories (trajectories evolving from products to reactants)
intersect the other of these hemispheres. Moreover, the NHIM has stable and unstable manifolds.
These have the structure of spherical cylinders R� S2f�3. Since they are of one dimension less than
the energy surface they have sufficient dimensionality to serve as impenetrable barriers in phase
space [3]. They enclose the regions in the energy surface which contain the reactive trajectories and
this way form the phase space conduits for reactions.

Due to the spatial confinement, quantum effects are particularly strong for the passage through a
phase space bottleneck, and accordingly, there is a strong interest in the quantum mechanical mani-
festation of the transition state. In molecular collision experiments, for example, high resolution spec-
troscopic techniques have been developed to directly or indirectly probe the transition state (see, e.g.,
[10]). Two quantum mechanical imprints of the transition state are given by the quantization of the
so-called cumulative reaction probability which is the quantum analog of the classical flux, and the
quantum resonances associated with the transition state. The quantization of the cumulative reaction
probability concerns the stepwise increase of the cumulative reaction probability each time a new
transition channel opens as energy is increased. While this is quite difficult to observe in chemical
reactions (see, e.g., the controversial experiment on the isomerization of ketene [11]) this effect can
be seen almost routinely as a quantization of the conductance in the ballistic electron transmission
through point contacts in semiconductor hetero-structures [12,13], metal nano-wires [14,15] and
even liquid metals. The quantum resonances on the other hand, describe how wavepackets initialised
on the transition state decay in time (see [8] for a detailed study).

Moreover, there is a strong interest in the development of a quantum version of transition state
theory, i.e. in a method to compute quantum reaction rates in such a way that it has similar compu-
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tational benefits as (classical) transition state theory. Though much effort has been devoted to this
problem it is still considered an open problem in the recent perspective paper [7]. One major problem
here seemed to be the lacking geometric insight which ultimately led to the realization of classical
transition state theory. In [16,8] a quantum version of transition state theory has been developed
which incorporates the classical phase space structures mentioned above in a natural way. It has been
demonstrated to yield quite efficient procedures to compute cumulative reaction probabilities as well
as resonances.

In this paper, we are concerned with phase space bottlenecks which are not induced by equilibrium
points. In the chemistry literature such bottlenecks are referred to as entropic barriers: in the micro-
canonical pictures this means that despite of the absence of a potential barrier, there is a minimum
in the number (or to be more precise phase space volume) of possible configurations transverse to
a reaction path. More concretely, we will consider potentialless systems with two and three degrees
of freedom where the entropic barriers result from hard wall constrictions with the shape of an hyper-
bola and an (asymmetric) hyperboloid, respectively. We will be particularly interested in the phase
space structures which govern the reaction dynamics in these systems and thus play an analogous role
as in the case of a smooth Hamiltonian system with reaction type dynamics as mentioned above, and
their quantum mechanical manifestations.

The motivation for studying hyperboloidal geometries is that the resulting classical and quantum
mechanical dynamics in such geometries are separable and in this sense completely solvable for such
systems. This leads, as we will see, to a very transparent study of the influence of the phase space
structures on the quantum transmission, and this way can serve as a first guide to study also non-sep-
arable dynamics in other constriction geometries.

This paper is organized as follows. In Section 2, we introduce in detail the systems studied in this
paper and the associated transmission problems. In Section 3, we show how the Schrödinger equation
of the transmission problem can be separated. The corresponding separations of the classical equa-
tions of motion are studied in Section 4. The quantum and classical transmission probabilities are
computed in Section 5. Finally, we compute and discuss quantum resonances in Section 6, and give
a summary of the results and an outlook in Section 7.

2. The transmission problem

In the 2D case, we consider a point particle moving freely in a region of the plane defined by

� x2

~a2 þ
y2

~b2
6 1; ð1Þ

where ðx; yÞ are Cartesian coordinates in the plane, and ~a and ~b are positive constants. We assume that,
classically, the particle is specularly reflected when it hits either of the branches of the boundary
hyperbola

� x2

~a2 þ
y2

~b2
¼ 1 ð2Þ

(see Fig. 1). Quantum mechanically, this leads to the boundary condition that the wavefunction
which describes the position of the point particle has to vanish on the boundary hyperbola (2). In
the wide-narrow-wide geometry of the region (1), we can associate the part which has x� �1 with
the region representing the ‘‘reactants” and the part which has x� 1 as the ‘‘products”, and that a
‘‘reaction” has taken place when the particle has moved from reactants to products. This interpre-
tation directly applies to the ballistic transmission of electrons through a point contact formed by
a lead of the shape (1), but more generally can be viewed as a model describing the collective mo-
tion of a many body problem like a molecule from one configuration (or ‘‘isomer”) to another.

In the 3D case, we consider an analogous region in the three-dimensional space defined by

� x2

~a2 þ
y2

~b2
þ z2

~c2 6 1; ð3Þ
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where ðx; y; zÞ are Cartesian coordinates, and ~a, ~b and ~c are positive constants for which we impose the
condition ~b P ~c. Note that this condition is only imposed for convenience and does not restrict the
generality since one can simply swap the y axis with the z axis. The region (3) is bounded by the
(asymmetric) hyperboloid

� x2

~a2 þ
y2

~b2
þ z2

~c2 ¼ 1 ð4Þ

(see Fig. 1). We again assume that, classically, the particle is specularly reflected when it hits the
boundary hyperboloid and hence also that the quantum mechanical (position) wavefunction vanishes
on the boundary hyperboloid (4). We note that the region (1) in 2D can be formally obtained from the
region (3) in 3D by letting ~c ! 0 which implies z! 0. While taking this limit leads to no problems for
the classical dynamics, one has to be more careful, due the Heisenberg uncertainty relation, when con-
sidering this limit in the quantum case. One can view the 2D transmission problem to be contained in
the 3D transmission problem either by considering a small but finite ~c > 0 which leads to a flat region
near the x–y plane where for the energies under consideration no excitations in the z direction are pos-
sible, or by considering a cylindrical region in 3D where the base of the cylinder has the shape (1).

The region (1) has a ‘‘bottleneck” contained in the y axis which is given by the line segment with
minimal and maximal y values �~b and þ~b, respectively. Similarly, the region (3) has a bottleneck in
the y–z plane which is bounded by the ellipse y2=~b2 þ z2=~c2 ¼ 1. In order to reduce the number of
(effective) parameters, we use as the length scale the maximum value of y in the bottleneck. So, for-
mally we have ~b ¼ 1 and the number of parameters specifying the accessible regions is 1 in the 2D
case and 2 in the 3D case.

The transmission through the bottlenecks can be viewed as a scattering problem. To this end we
assume that a beam of (non-interacting) particles is incident from x� �1 (the ‘‘reactants”) and we
want to compute the transmission probability to x� 1 (the ‘‘products”). We will compute the trans-
mission probability both classically and quantum mechanically in the spirit of transition state theory
in Section 5.

As mentioned in the introduction the motivation for choosing constrictions of the types (2) and (4)
is that they are the most general type of hard wall constrictions for which the transmission problem

y

x

z

1

Fig. 1. Accessible region confined by the boundary hyperboloid (4). The region has a ‘‘bottleneck” in the y–z plane with the
shape of an ellipse with semimajor axis 1 and semiminor axis ~c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

(in scaled coordinates). For the 2D case (~c ¼ 0, or
equivalently c ¼ 1), the accessible region is the area between the two branches of the hyperbola (2) in the x–y plane.
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can be separated and in this sense solved explicitly. We will discuss the separation in the following
section (Section 3). In fact, in the 2D case the transmission problem is still separable if the constriction
is composed of two branches of different confocal hyperbolas. However, the asymmetric case has no
3D analog and we therefore restrict ourselves to the symmetric case (2). Some aspects of the quantum
transmission and the associated resonances through constrictions of the types (2) and (4) have been
addressed already in earlier papers. The quantum resonances for an asymmetric 2D constriction con-
sisting of the branches of different hyperbola have been studied by Whelan [17]. The quantum trans-
mission problem (without resonances) through a constriction of the type (2) has been studied by
Yosefin and Kaveh [18]. Similarly, the transmission problem (again without resonances) has been
studied for an axially symmetric hyperboloidal constriction in 3D by Torres, Pascual and Sáenz [19],
and for the asymmetric case by Waalkens [20]. The main purpose of the present paper is to study
the quantum transmission and the associated resonances through the 2D and 3D constrictions (2)
and (4) in a coherent way using the perspective of transition state theory.

3. Separation of the Schrödinger equation

For the quantum transmission problem, we have to find solutions of the free Schrödinger or Helm-
holtz equations

� �h2

2m
o2

ox2 þ
o2

oy2

 !
w ¼ Ew ð2DÞ ð5Þ

or

� �h2

2m
o2

ox2 þ
o2

oy2 þ
o2

oz2

 !
w ¼ Ew ð3DÞ; ð6Þ

which for x� 1 are waves propagating in the positive x direction and fulfill Dirichlet boundary con-
ditions, i.e. we require the restriction of w on the boundary hyperbola (2) resp. hyperboloid (4) to van-
ish. The Helmholtz equations (5) and (6) together with their boundary conditions can be separated in
elliptic and ellipsoidal coordinates, respectively, as we will discuss in the following two subsections
which separately consider the 2D case and 3D case.

3.1. The 2D system

The 2D Helmholtz equation (5) together with the Dirichlet boundary conditions can be separated in
elliptic coordinates ðf; nÞ [21,22]. Each of them parametrizes a family of confocal quadrics

x2

s2 � a2 þ
y2

s2 ¼ 1; ð7Þ

where s 2 ff; ng and a2 ¼ 1þ ~a2=~b2.
For s ¼ n > a, both terms on the left-hand side of Eq. (7) are positive and the equation defines a

family of confocal ellipses with foci at ðx; yÞ ¼ ð0;�aÞ. Their intersections with the x axis and y axis
are at x ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � a2

p
and y ¼ �n, respectively. For a > s ¼ f > 0, the first term on the left-hand side

of Eq. (7) is negative giving confocal (two sheeted) hyperbolae with foci also at ðx; yÞ ¼ ð0;�aÞ. Their
intersections with the y axis are at y ¼ �f; they do not intersect the x axis.

The coordinate lines of f and g are shown in Fig. 2. Inverting Eq. (7) within the positive x–y quad-
rant gives

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � a2Þða2 � f2Þ

q
a

; ð8Þ

y ¼ nf
a
; ð9Þ

with
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0 6 f 6 a 6 n: ð10Þ

The remaining quadrants are obtained from appropriate reflections. However, it is also useful to re-
duce the discrete reflection symmetry of the system about the x axis and the y axis. In fact, the solu-
tions of the Helmholtz equation (5) fulfilling the Dirichlet boundary conditions along the boundary
hyperbola (2) can be classified in terms of their parities px and py which correspond to the reflections
about the y axis and x axis, respectively. We therefore introduce the symmetry reduced system which
only has the positive x–y quadrant as the fundamental domain and impose Dirichlet (negative parity)
or Neumann boundary conditions (positive parity) on the x and y axes. The Cartesian coordinate axes
are obtained from the elliptic coordinates f and n in terms of the equalities in (10): f ¼ 0 gives the x
axis; n ¼ a gives the segment of the y axis between the focus points, the rest of the y axis has f ¼ a (see
Fig. 3(a)).

The boundary hyperbola (2) (in scaled coordinates) coincides with the coordinate line f ¼ 1, i.e. in
the region (1) f takes values in ½0;1�. Considering only the region enclosed by the boundary hyperbola
(2), the coordinate lines n ¼ const: P a are transverse to the x direction. To this end note that the sin-
gular coordinate line n ¼ a contains the ‘‘bottleneck” ðx; yÞ 2 f0g � ½�1;1�. The coordinate n thus para-
metrizes the direction of the transmission; f parametrizes the direction transverse to the
transmission.

The parameter a determines how strong the narrowness of the constriction changes with x: for
a!1 the constriction becomes an infinitely long rectangualar strip; for a! 1 the constriction
degenerates to the y axis with a hole of width 2 about the origin.

(a) (b) (c)

Fig. 3. (a) Singular elliptic coordinate surfaces, for the 2D system. The line segment [0,1] is half of the ‘‘bottleneck” on the y axis.
(b) Singular ellipsoidal coordinate surfaces, for the 3D system. (c) ‘‘Bottleneck” (shaded region) in the y–z plane bounded by the
3D hyperboloidal constriction whose intersection with the y–z plane is the ellipse y2=1þ z2=ð1� c2Þ ¼ 1, and singular
coordinate patches n ¼ a and g ¼ a (inside and outside of the ellipse y2=a2 þ z2=ða2 � c2Þ ¼ 1, respectively).

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

= 5

= 4

= 3

= 0.5
= 1

= 1.5

= 2

Fig. 2. Coordinate lines n = const. (dashed ellipses) and f = const. (solid hyperbolae) with the boundary hyperbola (2) in bold.
The bold dots mark the focus points ðx; yÞ ¼ ð0;�aÞ (a2 ¼ 5).
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With the ansatz wðf; nÞ ¼ wfðfÞwnðnÞ the partial differential equation (5) can be separated and
turned into the set of ordinary differential equations

� �h2

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2
p d

ds

� �2

wsðsÞ ¼ E s2 � s2
2

� �
wsðsÞ; ð11Þ

where s 2 ff; ng and s2
2 denotes the separation constant. The equations for f and n are identical, but

they have to be considered on the different intervals (10) and for different boundary conditions. In
fact, the equations have regular singular points [21] at �a. These regular singular points have indices
0 and 1/2, i.e. there are solutions, which near �a are of the form wsðsÞ ¼ ðs	 aÞq ~wðsÞ where ~wðsÞ is ana-
lytic and q ¼ 0 or q ¼ 1=2. As the elliptic coordinates ðf; nÞ give for the regular singular point a the
Cartesian y axis, the indices determine the parities px of the total wave function wðf; nÞ [23], i.e.
q ¼ 0 or q ¼ 1=2 correspond to total wave functions which have px ¼ þ or px ¼ �, respectively. The
value of wf at the ordinary point f ¼ 0 determines the parity py.

For the computation and interpretation of the results below, it is useful to remove the singularities
in (11). This can be achieved by the transformation

ðfðmÞ; nðkÞÞ ¼ aðcosðmÞ; coshðkÞÞ; ð12Þ

which is the standard parametrization of elliptic coordinates by trigonometric functions. Inserting
(12) into (8) and (9) gives

x ¼ a sinðmÞ sinhðkÞ; y ¼ a cosðmÞ coshðkÞ: ð13Þ

To cover the positive x–y quadrant ðm; kÞ have to vary in the intervals

0 6 m 6 p=2; 0 6 k <1: ð14Þ

The boundary hyperbola (2) has

m ¼ mB ¼ arccosð1=aÞ: ð15Þ

Extending the intervals (14) to

mB 6 m 6 p� mB; �1 < k <1: ð16Þ

we get a full regular cover of the region (1) in terms of the strip ½mB;p� mB� � R.
Transforming (11) to the coordinates ðm; kÞ leads to

� �h2

2m
d2

dŝ2 wŝðŝÞ ¼ rŝE s2ðŝÞ � s2
2

� �
wŝðŝÞ; ð17Þ

where ŝ 2 fm; kg, sðŝÞ 2 ffðmÞ; nðkÞg are the functions from (12) and the rŝ are the signs rk ¼ þ and
rm ¼ �. Each of these equations can be interpreted as a one-dimensional Schrödinger equation with
a Hamiltonian of the standard type H ¼ ��h2ðd2

=dx2Þ=2þ V (‘‘kinetic plus potential energy”) with
effective energy and potential

Eŝ;eff ¼ �rŝEs2
2; Vŝ;effðŝÞ ¼ �rŝEs2ðŝÞ: ð18Þ

The effective energies and potentials (18) are shown for ‘‘representative” values of the separation con-
stant s2

2 in Fig. 7(a) of Section 4. Here, m varies in an interval of length p which is the period of the effec-
tive potential Vm;eff . What we mean by ‘‘representative” will be explained in Section 4, where we
analyze the corresponding classical system. Since the effective potential Vk;eff is symmetric under
the reflection k#� k (i.e. the reflection about k ¼ 0) there are solutions of (17) that are symmetric
or antisymmetric under this reflection. Using (13), we can relate the behavior of solutions under this
reflection to the parity px. Similarly, since the effective potential Vm;eff is symmetric under the reflec-
tion m#� mþ p (i.e. the reflection about m ¼ p=2) there are solutions of (17) that are symmetric or
antisymmetric under this reflection. Again using (13) we can relate the behavior of solutions under
this reflection to the parity py. The parities px and py are marked at the top of Fig. 7(a). The fact that
the algebraic counterparts of (17) in (11) are identical, is reflected in (17) by the substitution m! im
which relates the equation for m to the equation for k.
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3.2. The 3D system

Similarly to the 2D case, the 3D Helmholtz equation (6) together with the Dirichlet boundary con-
ditions can be separated in ellipsoidal coordinates ðf;g; nÞ [21,22]. Each of them parametrizes a family
of confocal quadrics

x2

s2 � a2 þ
y2

s2 þ
z2

s2 � c2 ¼ 1; ð19Þ

where s 2 ff;g; ng, c2 ¼ 1� ~c2=~b2 and a2 ¼ 1þ ~a2=~b2.
For s ¼ n > a, all terms on the left-hand side of Eq. (19) are positive and the equation defines a fam-

ily of confocal ellipsoids. Their intersections with the y–z plane, the x–y plane and the x–z plane are
planar ellipses with foci at ðy; zÞ ¼ ð�c;0Þ, ðx; yÞ ¼ ð0;�aÞ and ðx; zÞ ¼ ð0;�ða2 � c2Þ1=2Þ, respectively.
For a > s ¼ g > c, the first term on the left-hand side of Eq. (19) becomes negative. Eq. (19) thus gives
confocal one sheeted hyperboloids. Their intersections with the y–z plane are planar ellipses with foci
at ðy; zÞ ¼ ð�c;0Þ; the intersections with the x–y plane and the x–z plane are planar hyperbolas with
foci at ðx; yÞ ¼ ð0;�aÞ and ðx; zÞ ¼ ð0;�ða2 � c2Þ1=2Þ, respectively. For c > s ¼ f > 0, the first and third
terms on the left-hand side of Eq. (19) are negative giving confocal two sheeted hyperboloids. Their
intersections with the y–z plane and the x–y plane are planar hyperbolas with foci at ðy; zÞ ¼ ð�c;0Þ
and ðx; yÞ ¼ ð0;�aÞ, respectively; they do not intersect the x–z plane.

The coordinate surfaces of f, g and n are shown in Fig. 4. Inverting Eq. (19) within the positive x–y–z
octant gives

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � a2Þða2 � g2Þða2 � f2Þ

q
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2
p ; ð20Þ

y ¼ ngf
ac

; ð21Þ

z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � c2Þðg2 � c2Þðc2 � f2Þ

q
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2
p ; ð22Þ

with

Fig. 4. Ellipsoidal coordinates surfaces n ¼ 5 (ellipsoid in red), g ¼ 1 (the one sheeted boundary hyperboloid (4) in blue) and
f ¼ 1=2 (two sheeted hyperboloid in green), for ða2; c2Þ ¼ ð5; 0:2Þ. (For interpretation of color mentioned in this figure legend the
reader is referred to the web version of the article.)
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0 6 f 6 c 6 g 6 a 6 n: ð23Þ

The remaining octants are obtained from appropriate reflections. Again, we also introduce a sym-
metry reduced system which has the positive x–y–z octant as the fundamental domain. The solu-
tions of the Helmholtz equation (6) fulfilling Dirichlet boundary conditions along the boundary
hyperboloid (4) with parities px, py and pz are then obtained from the symmetry reduced system
by imposing Dirichlet or Neumann boundary conditions along the Cartesian coordinate planes
which in terms of the elliptic coordinates ðf;g; kÞ are given by the equalities in one of the equa-
tions in (23): f ¼ 0 gives the x–z plane; f ¼ c and g ¼ c give two surface patches which together
cover the x–y plane; g ¼ a and n ¼ a give two surface patches which together cover the y–z plane
(see Fig. 3(b)).

The boundary hyperboloid (4) (in scaled coordinates) coincides with the coordinate surface g ¼ 1,
i.e. within the region (3) g is restricted to ½c;1�. Considering only the region enclosed by the boundary
hyperboloid (4), the coordinate planes n ¼ const: P a are transverse to the x direction. Note that the
singular coordinate plane n ¼ a is a region in the y–z plane which is enclosed by an ellipse which lies
outside of the hyperboloidal constriction (see Fig. 3(c)). The coordinate n thus parametrizes the direc-
tion of transmission; g and f parametrize the two directions transverse to transmission.

The parameter c determines the asymmetry of the cross-section of the constriction with c ¼ 0 lead-
ing to an axially symmetric constriction and c ¼ 1 leading to the 2D case. The parameter a determines
how strong the narrowness changes with x: for a!1 the constriction becomes cylindrical with an
elliptical cross-section; for a! 1 the constriction degenerates to the y–z plane with a hole having
the shape of an ellipse.

With the ansatz wðf;g; nÞ ¼ wfðfÞwgðgÞwnðnÞ the Helmholtz equation (6) can be separated and
turned into the set of ordinary differential equations

� �h2

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 � a2Þðs2 � c2Þ

q d
ds

� �2

wsðsÞ ¼ E s4 � 2ks2 þ l
� �

wsðsÞ; ð24Þ

where s 2 ff;g; ng and k and l denote the separation constants. The equations for f, g and n are iden-
tical, but they have to be considered on the different intervals (23) and for different boundary condi-
tions. For later purposes it is useful to rewrite (24) in the form

� �h2

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 � a2Þðs2 � c2Þ

q d
ds

� �2

wsðsÞ ¼ E s2 � s2
1

� �
s2 � s2

2

� �
wsðsÞ; ð25Þ

where

s2
1 ¼ k� ðk2 � lÞ1=2

; s2
2 ¼ kþ ðk2 � lÞ1=2

; ð26Þ

and conversely

k ¼ 1
2

s2
1 þ s2

2

� �
; l ¼ s2

1s2
2: ð27Þ

Similarly to equations (11) in the 2D case the equations (24) have regular singular points [21] at �a
and �c. All these regular singular points again have indices 0 and 1/2 like in the 2D case. Thus there
are solutions, which near r ¼ �a or r ¼ �c are of the form wsðsÞ ¼ ðs� rÞqr ~wðsÞ where ~wðsÞ is analytic
and qr ¼ 0 or qr ¼ 1=2. As the ellipsoidal coordinates ðf;g; nÞ give for the regular singular points
�a and �c the Cartesian y–z plane and x–y plane, respectively, the indices determine the parities px

and pz of the total wave function wðf;g; nÞ [22]. More precisely, qa ¼ 0 or qa ¼ 1=2 correspond to total
wave functions which have px ¼ þ or px ¼ �, respectively, and qc ¼ 0 or qc ¼ 1=2 correspond to total
wave functions which have pz ¼ þ or pz ¼ �, respectively. As in the 2D case, the value of wf at the
ordinary point f ¼ 0 determines the parity py.

For the computation and interpretation of the results below, it is useful to remove the singularities
in (24). This can be achieved by the transformation

ðfðmÞ;gðlÞ; nðkÞÞ ¼ aðqsnðm; qÞ;dnðl; q0Þ;dnðk; qÞ
cnðk; qÞÞ; ð28Þ
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where snð/; qÞ, cnð/; qÞ and dnð/; qÞ are Jacobi’s elliptic functions with ‘‘angle” / and modulus q [24].
Here, the modulus is given by q ¼ c=a and q0 ¼ ð1� q2Þ1=2 denotes the conjugate modulus. This is the
standard parametrization of ellipsoidal coordinates by elliptic functions [21].

Expressing the Cartesian coordinates in terms of ðm;l; kÞ gives

x ¼ q0a
snðk; qÞsnðl; q0Þdnðm; qÞ

cnðk; qÞ ;

y ¼ a
dnðk; qÞdnðl; q0Þsnðm; qÞ

cnðk; qÞ ;

z ¼ q0a
cnðl; q0Þcnðm; qÞ

cnðk; qÞ :

ð29Þ

To cover the positive x–y–z octant ðm;l; kÞ have to vary in the intervals

0 6 m 6 KðqÞ; 0 6 l 6 Kðq0Þ; 0 6 k 6 KðqÞ; ð30Þ

where KðqÞ and Kðq0Þ are Legendre’s complete elliptic integral of first kind with modulus q and q0,
respectively. The boundary hyperboloid (4) has

l ¼ lB ¼ Fððða2 � 1Þ=ða2 � c2ÞÞ1=2
; q0Þ; ð31Þ

where F is Legendre’s incomplete elliptic integral of first kind which in (31) has argument
ðða2 � 1Þ=ða2 � c2ÞÞ1=2 and modulus q0. Extending the intervals (30) to

0 6 m 6 4KðqÞ; lB 6 l 6 2Kðq0Þ � lB; �KðqÞ 6 k 6 KðqÞ; ð32Þ

we get a double cover of the region (3) in terms of the ‘‘solid torus”
R=ð4KðqÞZÞ � ½lB;2Kðq0Þ � lB� � ½�KðqÞ;KðqÞ�, where R=ð4KðqÞZÞ denotes the topological circle result-
ing from identifying points in R differing by integer multiples of the period in m which is 4KðqÞ. In
Fig. 5, we present the solid torus as the cube (32), where the opposite sides m ¼ 0 and m ¼ 4KðqÞ have
to be identified. Each of the smaller cubes

½nmKðqÞ; ðnm þ 1ÞKðqÞ� � ½0;Kðq0Þ� � ½0;�KðqÞ� and
½nmKðqÞ; ðnm þ 1ÞKðqÞ� � ½Kðq0Þ;2Kðq0Þ� � ½0;�KðqÞ�

ð33Þ
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Fig. 5. Representation of the solid torus (32) as a cube with periodic boundary conditions in m. Each small cube represents one
Cartesian x–y–z octant. The octants corresponding to the smaller cubes are indicated by a ‘‘binary” labeling with respect to the
signs of x, y and z (e.g., (–,–,–) corresponds to 0, (–,–,+) corresponds to 1, etc.). The shaded planes mark the boundary
hyperboloid which on the double cover is given by l ¼ lB and l ¼ 2K0ðqÞ � lB, where K0ðqÞ ¼ Kðq0Þ.
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in Fig. 5, with nm 2 Z represents one Cartesian x–y–z octant of the region (3). Note that each of the smaller
cubes (33) has four neighbors. This property can be understood from the fact that in order to regularise
the coordinates ðf;g; nÞ in terms of the coordinates ðm;l; kÞwe have to regularise each of the four singular
transition between two x–y–z octants shown in Fig. 3 (note that the singular patch g ¼ a in Fig. 3 is not
accessible in (3)). The two covers of the double cover (32) are related by the involution

Sðm;l; kÞ ¼ ð2KðqÞ � m;�l� 2Kðq0Þ; kÞ; ð34Þ

which leaves the Cartesian coordinates (29) fixed (see also Fig. 5).
Transforming (24) to the coordinates ðm;l; kÞ leads to

� �h2

2m
d2

dŝ2 wŝðŝÞ ¼ rŝ
E
a2 s4ðŝÞ � 2ks2ðŝÞ þ l
� �

wŝðŝÞ; ð35Þ

where ŝ 2 fm;l; kg, sðŝÞ 2 ffðmÞ;gðlÞ; nðkÞg are the functions from (28) and the rŝ are the signs
rk ¼ rm ¼ þ and rl ¼ �. Each of these equations can be interpreted as a one-dimensional Schrödinger
equation with a Hamiltonian of the standard type H ¼ ��h2ðd2

=dx2Þ=2þ V (‘‘kinetic plus potential en-
ergy”) with effective energy and potential

Eŝ;eff ¼ rŝ
E
a2 l; Vŝ;effðŝÞ ¼ �rŝ

E
a2 ðs

4ðŝÞ � 2ks2ðŝÞÞ: ð36Þ

The effective energies and potentials (36) are shown for representative (again see Section 4) values of
the separation constants k and l in Fig. 10(a) of Section 4, where l and m vary in intervals of length
2Kðq0Þ and 2KðqÞ, which are the periods of the effective potentials Vl;eff and Vm;eff , respectively.

The reflection symmetry of the effective potential Vk;eff about k ¼ 0 leads to solutions of (35) that
are symmetric or antisymmetric under this reflection. Similar to the 2D case, we can use (29) to relate
the behavior of solutions under this reflection to the parity px. The effective potential Vl;eff is symmet-
ric about l ¼ Kðq0Þ, and using (35) the symmetry or antisymmetry of solutions of (35) under the cor-
responding reflection l#2Kðq0Þ � l can be related to the parity pz. The effective potential Vm;eff has
reflection symmetry about m ¼ 0 and m ¼ KðqÞ. Eq. (29) relates the symmetry or antisymmetry of
the solutions under the corresponding reflections m#� m and m#2KðqÞ � m to parities py and pz,
respectively. We note that, like their algebraic counterparts (24), the wave equations (35) for m, l
and k are identical, if one considers them on different intervals (in the complex plane). The equations
for l and k can, e.g., be related to the equation for m using the identities
snðuþ KðqÞ þ iKðq0Þ; qÞ ¼ q�1dnðu; qÞ=cnðu; qÞ and snð�iuþ KðqÞ þ iKðq0Þ; qÞ ¼ q�1 dnðu; q0Þ in (28). This
is similar to the statement on the wave equations (17) in the 2D case.

4. The classical systems

We will now study the classical dynamics of the transmission problem described in Section 2. As
mentioned in Section 2 the classical motions consist of motions along straight lines in the regions
(1) and (3) with specular reflections at the boundary hyperbola and hyperboloid, respectively. Like
the Helmholtz equations with the Dirichlet boundary conditions imposed along the boundary hyper-
bola and hyperboloid the classical equations of motion can also be separated in elliptic (2D) and ellip-
soidal coordinates (3D). The separability implies that the classical dynamics is integrable, i.e. there are
as many constants of the motion (the separation constants) that are independent and in involution as
degrees of freedom. A modification of the Liouville–Arnold theorem [25] says that the space of the
classical motion is (up to singular sets of measure zero) foliated by invariant cylinders (the analogs
of invariant tori in closed systems). In the following we will have a closer look at these foliations
for both the 2D and 3D system.

4.1. The 2D system

4.1.1. Phase space foliation
Separating the equations of motions for the free motion in the plane in the elliptic coordinates ðf; nÞ

introduced in Section 3.1 yields that the momenta ps conjugate to s, s 2 ff; ng, are given by
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p2
s ¼ 2mE

s2 � s2
2

s2 � a2 ð37Þ

(see [23]), where s2
2 is a separation constant which acts as the square of the turning point of the respec-

tive degree of freedom s 2 ff; ng. These equations are the analogs of the separated Helmholtz equa-
tions in the algebraic form (11). Similarly, for the coordinates ŝ 2 ðm; kÞ and their conjugate
momenta pŝ, the analog of the regularized separated Helmholtz equations (17) are given by

p2
ŝ ¼ rŝ2mEðs2ðŝÞ � s2

2Þ ð38Þ
¼ 2mðEŝ;eff � Vŝ;eff ðŝÞÞ; ð39Þ

where ŝ 2 fm; kg and sðŝÞ 2 ffðmÞ; nðkÞg in (38) are the functions defined in (12), and the effective energy
and potential in (39) are defined as in (18).

The specular reflection at the 2D boundary hyperbola f ¼ 1 or equivalently m ¼ mB and m ¼ p� mB is
described by mapping the phase space coordinates right before the reflection to the phase space coor-
dinates right after the reflection according to

ðf; n;pf;pnÞ#ðf; n;�pf; pnÞ ð40Þ
or

ðm; k;pm;pkÞ#ðm; k;�pm;pkÞ; ð41Þ

respectively. As opposed to the phase space coordinates ðs; psÞ, s 2 ff; ng the phase space coordinates
ðŝ; pŝÞ, ŝ 2 fm; kg lead to a smooth description of the motion (apart from the specular reflections).

Like in the quantum case in Section 3.1 we can also introduce a symmetry reduced system in the
classical case. For the symmetry reduced system the motion is confined to the positive x–y quadrant of
the region (1) with specular reflections not only at the boundary hyperbola (2) but also at the Carte-
sian coordinate axes.

The physical meaning of the separation constant s2
2 becomes more clear from multiplying it with

ð2mEÞ1=2 and expressing it in terms of Cartesian coordinates. A little bit of algebra then givesffiffiffiffiffiffiffiffiffiffi
2mE
p

s2
2 ¼ L2

z þ a2p2
y ¼

1
2

L2
z� þ L2

zþ

� �
; ð42Þ

where Lz ¼ xpy � ypx is the angular momentum about the origin, and Lz� ¼ ðxþ aÞpy � ypx and
Lzþ ¼ ðx� aÞpy � ypx are the angular momenta about the focus points ðx; yÞ ¼ ð0;�aÞ. This is the second
constant of the motion beside the energy which makes the system integrable. A modification of the
Liouville–Arnold theorem then implies that the four-dimensional phase space is foliated by invariant
cylinders (see below) which are given by the common level sets of the constants of motion E and (42)
or equivalently E and s2

2. In fact, the energy plays no major role for the motions. It just determines the
speed of the motion along the straight lines (in configuration space). As indicated by the occurrence of
the energy as a multiplicative factor in the equations for the separated momenta (37) and (38), energy
surfaces of different positive energies only differ by the scaling of the momenta, and accordingly they
all have the same type of foliation by invariant cylinders. To discuss the foliations of the energy sur-
faces it is thus sufficient to consider a single energy surface of fixed energy E > 0. The different types of
cylinders contained in the energy surface of this energy are then parametrized by the second constant
of motion, s2

2, in the following way.
First of all, in order to simultaneously have real momenta in the physical ranges f 2 ½0; a� and

n 2 ½a;1Þ (see (10)) the separation constant s2
2 can only take non-negative values. We therefore will

occasionally write s2 ¼
ffiffiffiffiffi
s2

2

q
. The interval ½0;1Þ contains three subintervals which correspond to dif-

ferent smooth families of cylinders which we denote by

T1 : 0 < s2
2 < 1;

T2 : 1 < s2
2 < a2;

T3 : a2 < s2
2:

ð43Þ

At the values s2
2 ¼ 0, s2

2 ¼ 1 and s2
2 ¼ a2, the families of cylinders bifurcate, and these parameter values

thus present critical motions to which we will come back below (also see the bifurcation diagram in
Fig. 6).
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To understand the motions on the different types of cylinders T1, T2 and T3 it is useful to consider
the corresponding effective potentials and energies (18) and phase portraits in the planes m–pm and k–
pk in Fig. 7 in combination with the projections of the cylinders to configuration space which are
shown in Fig. 8.

The common level set of the constants of motion E and s2
2 in T1 consists of two disjoint cylinders

which both extend over all values of x. On one of these cylinders pk is always greater than zero, and
on the other pk is always less than zero. These cylinders are thus foliated by forward and backward
reactive trajectories, respectively. The motion oscillates in the m degree of freedom in such a way that
the trajectories do not hit the boundary hyperbola (2). The topology of the cylinders, R� S

1, becomes
apparent from taking the Cartesian product of the lines (
 R) in the phase plane k–pk in the left panel
of Fig. 7(b) with the corresponding topological circle in the phase plane m� pm in the right panel of
Fig. 7(b).

Similarly, a common level set of the constant of motion in T2 consists of two disjoint cylinders of
which one again consists of forward reactive trajectories and the other again consists of backward
reactive, but the oscillations in the transverse degree of freedom m now involve reflections at the
boundary hyperbola. To simplify the discussion, we will glue together the two line segments in the
m� pm plane in the right panel of Fig. 7(b) which have positive and negative pm, respectively, at the
points m ¼ mB and m ¼ p� mB, i.e. at m ¼ mB and m ¼ p� mB we identify pm and �pm. Note that strictly
speaking the momenta are not defined along the boundary hyperbola. However, the gluing can also
be justified from physical considerations by viewing the hard wall potential which causes the reflec-
tions as the limiting case of a smooth potential that becomes steeper and steeper. The resulting object
can then again be viewed as a topological circle, S1, and taking the Cartesian products with the cor-
responding lines 
 R in the k–pk planes we again obtain topological cylinders R� S

1 similar to those
in T1.

In contrast to the cylinders above, the common level set of the constants of motion in T3 consists of
two disjoint cylinders which when projected to configuration space are both bounded away from the y
axis by the ellipse n2 ¼ s2

2. These cylinders are foliated by non-reactive trajectories which stay on the
side of reactants and products, respectively.
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Fig. 6. Bifurcation diagram in terms of the variable s2
2 for the 2D system, with a2 ¼ 3=2 (a), and in terms of the variables ðs2

1; s
2
2Þ

(b) and ðk; lÞ (c) for the 3D system, with ða2; c2Þ ¼ ð3=2;1=2Þ.
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The critical value s2
2 ¼ 1 corresponds to the limiting motion between T1 and T2. The level set of the

constants of motion E > 0 and s2
2 ¼ 1 consists of two disjoint cylinders which contain forward and

backward reactive trajectories, respectively, which hit the boundary hyperbola (2) tangentially (see
the dotted line in the right panel of Fig. 7(b)).

At the critical value s2
2 ¼ 0 the two cylinders of type T1 degenerate to two lines 
 R given by the

Cartesian products of the dot at the center of the m� pm plane in the right panel of Fig. 7(b) with
the corresponding lines in the k–pk plane in the left panel of the same figure. One of these lines cor-
responds to a trajectory along the x axis which has px ¼ ð2mEÞ1=2; the other line corresponds to a tra-
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Fig. 7. (a) Effective potentials and energies for the types of motion T1, T2 and T3 defined in Fig. 6(a). For the m degree of freedom
the hatched regions mark the forbidden regions ½0; mB� and ½p� mB;p�which are not contained in the region (1). (b) Phase curves
parametrized by s2

2 (with E ¼ const: > 0). For s2
2 ¼ 0, we have the forward and backward reaction paths (the free flight motions

along the x axis) which correspond to the branches of the green solid hyperbola in the left panel and the green central dot in the
right panel. For a fixed s2

2 2 ð0;1Þ, we have two invariant cylinders of forward and backward reactive trajectories which do not
involve specular reflections at the boundary hyperbola (2). These appear as the two branches of the black solid ‘‘horizontal”
hyperbola in the left panel and the inner black solid circle in the right panel. The two cylinders which have s2

2 ¼ 1 and have
forward and backward trajectories that touch the boundary hyperbola (2) tangentially are marked by the red dashed curves in
either panel. A fixed s2

2 2 ð1; a2Þ represents two cylinders which have forward and backward reactive trajectories that involve
specular reflections at the boundary hyperbola. These are marked by the two branches of the black solid ‘vertical’ hyperbola in
the left panel and the corresponding chopped circle in the right panel. The value s2

2 ¼ a2 represents the periodic orbit (or
‘‘transition state”) TS which corresponds to the origin in the left panel and the corresponding blue chopped circles in the right
panel, and its stable and unstable manifolds with their forward and backward branches Ws=u

f;b forming the blue cross in the left
panel and coinciding with the blue chopped circles in the right panel. A fixed s2

2 > a2 represents two cylinders of non-reactive
trajectories on the reactants side (k < 0) and products side (k > 0), respectively. These correspond to the two branches of the
black solid ‘‘vertical” hyperbola in the left panel and the corresponding chopped circle in the right panel. The black dashed lines
in the left panel mark the forward (pk > 0) and backward (pk < 0) dividing surfaces DSb/f. In the right panel, these appear as the
hatched chopped disk. (a2 ¼ 5.)

Fig. 8. Configuration space projections (shaded regions) of the invariant cylinders corresponding to the three types of 2D
motions T1, T2 and T3. The bold lines mark the boundary hyperbola (2). The ranges for x and y are both [�3/2,3/2]. (a2 ¼ 3=2.)
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jectory along the x axis which has px ¼ �ð2mEÞ1=2. These can be viewed as the forward and backward
reaction paths, i.e. they are the unique trajectories, which for a fixed energy, are reactive and do not
involve any motion in the transverse degree of freedom [26,8].

The critical value s2
2 ¼ a2 represents the unstable periodic orbit along the y axis which, for a fixed en-

ergy E > 0, bounces back and force between the two branches of the boundary hyperbola (2). The com-
mon level set of E > 0 and s2

2 ¼ a2 consists not only of this periodic orbit but also of the stable and unstable
manifolds Ws and Wu of this periodic orbit. In the k–pk phase plane in the left panel of Fig. 7(b) the stable
and unstable manifolds occur as the cross shaped structure which has the periodic orbit at the center.
With our interpretation of reflections at the boundary hyperbola to be smooth the periodic orbit has
the topology S1, and its stable and unstable manifolds are cylinders R� S1. The stable and unstable man-
ifolds are of special significance for the classical transmission since they are of codimension 1 in the en-
ergy surface, i.e. they have one dimension less than the energy surface, and this way have sufficient
dimensionality to act as impenetrable barriers in the energy surface [27]. In fact, the stable and unstable
manifolds form the separatrices between reactive and non-reactive trajectories. More precisely, Ws and
Wu each have two branches: we denote the branch of Ws which has pk > 0 (resp. pk < 0) the forward
(resp. backward) branch, Ws

f (resp. Ws
b), of the stable manifold. Similarly, we denote the branch of Wu

which has pk > 0 (resp. pk < 0) the forward (resp. backward) branch, Wu
f (resp. Wu

b), of the unstable man-
ifold (see Fig. 7(b)). Moreover, we call the union of the forward banches,

Wf :¼Ws
f [Wu

f ; ð44Þ

the forward reactive cylinder, and the union of the backward branches,

Wb :¼Ws
b [Wu

b ; ð45Þ

the backward reactive cylinder. The forward reactive cylinder encloses all trajectories in an energy sur-
face of the respective energy E > 0 which are forward reactive; the backward reactive cylinder en-
closes all trajectories in such an energy surface which are backward reactive. The non-reactive
trajectories are contained in the complement of these regions. The forward and backward reactive cyl-
inders thus play a crucial role for the classification of trajectories with respect to their reactivity. They
can be viewed to form the phase space conduits for reaction. In particular, the forward and backward
reaction paths mentioned above can be viewed to form the centerlines of the regions enclosed by
these cylinders.

The periodic orbit, or more precisely, the family of periodic orbits oscillating along the y axis with
different energies E > 0 can be viewed to form the transition state or activated complex. Reactive tra-
jectories of a given energy E > 0 pass ‘‘through” the periodic orbit at that energy (the ‘‘transition state
at energy E”) in the following sense. Setting x ¼ 0 on the energy surface defines a two-dimensional
surface in the energy surface which is given by

DS ¼ fðx; y; px; pyÞ 2 R4 : x ¼ 0; y 2 ½�1;1�;p2
x þ p2

y ¼ 2mEg ¼ fðm; k;pm;pkÞ 2 R4 : k ¼ 0;

m 2 ½mB;p� mB�; p2
k þ p2

m ¼ 2mEa2ð1� a2 cos2 mÞg: ð46Þ

With our convention to identify the momenta�pm and þpm at m ¼ mB and m ¼ p� mB, the surface DS has
the topology of a two-dimensional sphere, S2. It defines a so-called dividing surface that has all the de-
sired properties that are crucial for the transition state computation of the classical transmission prob-
ability from the flux through a dividing surface. First of all, it divides the energy surface into a
reactants part (x < 0) and a products part (x > 0). In order to be reactive a trajectory thus has to inter-
sect the dividing surface. In fact, the periodic orbit or transition state at energy E given by

TS ¼ fðx; y; px;pyÞ 2 R2 � R2 : x ¼ 0; px ¼ 0; y 2 ½�1;1�; p2
y ¼ 2mEg ð47Þ

can be viewed to form the equator of the dividing surface (46). It separates the dividing surface into
two hemispheres which we call the forward dividing surface

DSf ¼ fðx; y;px;pyÞ 2 R4 : x ¼ 0; y 2 ½�1;1�;p2
x þ p2

y ¼ 2mE; px > 0g ¼ fðm; k;pm;pkÞ 2 R4

: k ¼ 0; m 2 ½mB;p� mB�; p2
k þ p2

m ¼ 2mEa2ð1� a2 cos2 mÞ;pk > 0g: ð48Þ
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and the backward dividing surface

DSb ¼ fðx; y; px; pyÞ 2 R4 : x ¼ 0; y 2 ½�1;1�;p2
x þ p2

y ¼ 2mE; px < 0g ¼ fðm; k;pm;pkÞ 2 R4

: k ¼ 0; m 2 ½mB;p� mB�;p2
k þ p2

m ¼ 2mEa2ð1� a2 cos2 mÞ;pk < 0g: ð49Þ

These two hemispheres appear in the right panel of Fig. 7(b) as the disk enclosed by the blue curve
that represents the transition state periodic orbit TS in the m� pm plane. Note that the circles contained
in this disk have to be combined with the two corresponding lines in the k–pk plane in the right panel
of Fig. 7(b) which have pk > 0 (corresponding to forward reactive trajectories) or pk < 0 (correspond-
ing to backward reactive trajectories). All forward reactive trajectories have a single intersection with
the forward dividing surface, and all backward reactive trajectories have a single intersection with the
backward dividing surface. Non-reactive trajectories do not intersect the dividing surface at all. The
dividing surface is everywhere transverse to the Hamiltonian flow apart from its equator, which is
a periodic orbit and thus is invariant under the Hamiltonian flow.

4.1.2. Action integrals
In the previous section, we have seen that the phase space is (up to critical motions which form a

set of measure zero) foliated by invariant cylinders where the cylinders are given by the Cartesian
products of circles in ðm; pmÞ and unbounded lines in ðk; pkÞ. For the ðm; pmÞ component of the motions,
we can directly introduce action-angle variables [25]. As we will see below, we can also associate an
action type integral with the unbounded ðk; pkÞ component of the motion. Both of these actions will
play a role in the semiclassical computation of the cumulative reaction probability and the quantum
resonances (see Sections 5 and 6, respectively).

Action integrals depend on the type of motion, and typically change from one type of motion to
another. For the actions associated with the m or equivalently f degree of freedom we find

If ¼
1

2p

I
pfdf ¼

ffiffiffiffiffiffiffiffiffiffi
2mE
p 4

2p

Z fþ

f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � s2

2

f2 � a2

s
df; ð50Þ

where we took pf from (37) and the integration boundaries f� and fþ are given by f� ¼ 0 and fþ ¼ s2

for motions of type T1 and fþ ¼ 1 for motions of type T2 and T3. The corresponding action integral for
the symmetry reduced system, which we denote by eIf, is given by

eIf ¼
1
2

If: ð51Þ

To understand the analytic nature of the action integral If, we substitute z ¼ f2 in Eq. (50) which gives

If ¼
ffiffiffiffiffiffiffiffiffiffi
2mE
p 1

p

Z zþ

z�

ðz� s2
2Þ

wðzÞ dz; ð52Þ

where

w2ðzÞ ¼ P3ðzÞ :¼
Y3

i¼1

ðz� ziÞ; ð53Þ

and z�; zþ are consecutive elements of the set fz1 ¼ 0; z2 ¼ a2; z3 ¼ s2
2; zb ¼ 1g.

Here, zb ¼ 1 corresponds to the boundary hyperbola. The differential dz=wðzÞ has the four critical
points fz1; z2; z3;1g which means that the integral (52) is elliptic. We refrain from expressing this
integral in terms of Legendre’s standard integrals [28]. Instead, and for later purposes (see Sections
5 and 6), we interpret the integral If for motions of type T2 and T3 as an Abelian integral on the elliptic
curve

Cw ¼ fðs;wÞ 2 C2 : w2 ¼ P3ðzÞg: ð54Þ

Here, C defines the compactified complex plane (i.e. the Riemann sphere). The algebraic curve Cw is of
genus 1, i.e. it has the topology of a 1-torus. For motions of type T2 or T3 the action If in (53) can then
be written as
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If ¼
ffiffiffiffiffiffiffiffiffiffi
2mE
p 1

2p

Z
cf

ðz� s2
2Þ

dz
w
; ð55Þ

where for T2, the integration path cf is defined as illustrated in Fig. 9(b). For T3, the order of s2
2 and a2

along the real axis in Fig. 9(b) is reversed. However, this does not affect the definition of cf for T3. Due
to the billiard boundary the integration path cf is not closed on Cw, i.e. the integral If is an incomplete
elliptic integral.

On Cw, we also define the complete elliptic integral

2
2 a2

s2
2 2a

a2

s2
2

γ ξ

(c)

ξγ ζ

γ ζ

s

(a)

(b)

γ

z0

1

Im z

Re z0

1

Im z

Re z0

P (z)
3

1

+

− +

−

+

−

−
+

Fig. 9. (a) The graph of the polynomial P3 defined in (54) for a real separation constant s2
2 satisfying 1 < s2

2 < a2 (motion type T2).
(b) Elliptic curve Cw for w2 ¼ P3ðzÞ with P3 as in (a), and integration paths cf and cn which define the integrals in (55) and (56).
Only one half (Riemann sheet) of the elliptic curve is shown. This half is obtained from introducing the branch cuts which
connect the branch points �1 and 0, and s2

2 and a2 (bold lines along the real axis). The signs below and above these branch cuts
indicate the value of w ‘‘right above” and ‘‘right below” the branch cut. At ‘‘+”, w has the value þi j w j; at ‘‘�”, w has the value
�i j w j. The integration path cn is a closed loop which encircles the right branch cut. The integration path cf consists of two
parts. It starts at z ¼ 1 on the shown Riemann sheet of w and intersects the branch cut between 0 and �1. This part is marked
by a solid line. The integration path continues on the other Riemann sheet (which is a copy of the one shown and which joins
this copy at the branch cuts) and ends at the point 1 on the other sheet. This part is shown as the dashed line. (c) The
continuation of (b) for s2

2 leaving the real axis (see Section 6).
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In ¼ i
ffiffiffiffiffiffiffiffiffiffi
2mE
p 1

2p

Z
cn

ðz� s2
2Þ

dz
w

ð56Þ

and its symmetry reduced partnereIn ¼
1
2

In ð57Þ

with the closed integration path cn in (56) defined as in Fig. 9(b). This assigns a finite, positive real val-
ued integral also to the unbounded degree of freedom k or equivalently n for motion T2. For motion T3

the order of s2
2 and a2 along the real axis in Fig. 9(b) is reversed. The integral In defined according to

(56) is then negative real. Though at first not important for the classical dynamics, this integral will
play an important role in the semiclassical computations in Sections 5 and 6.

4.2. The 3D system

4.2.1. Phase space foliation
Similarly to (37) the separated momenta conjugate to ðf;g; nÞ can be written for the 3D system as

p2
s ¼ 2mE

s4 � 2ks2 þ l
ðs2 � a2Þðs2 � c2Þ ¼ 2mE

ðs2 � s2
1Þðs2 � s2

2Þ
ðs2 � a2Þðs2 � c2Þ ; ð58Þ

where ðs 2 ff;g; ngÞ (see [22]), k and l are separation constants, and s2
1 6 s2

2 are defined as in (26). Since
the latter are the squares of the zeroes of the numerator polynomial on the right of (58), they are the
squares of the turning points in the respective degree of freedom s 2 fg; f; ng.

The corresponding equations for the coordinates ðm;l; kÞ are

p2
ŝ ¼ rŝ

2mE
a2 ðs

4ðŝÞ � 2ks2ðŝÞ þ lÞ; ð59Þ

where ŝ 2 fm;l; kg, and sðŝÞ 2 ffðmÞ;gðlÞ; nðkÞg are the functions defined in (28). Similarly to the 2D
case, (58) and (59) are the classical analogs of the separated wave equations (24) and (35), respec-
tively. The specular reflection at the hyperboloidal boundary g ¼ 1 or equivalently l ¼ lB and
l ¼ 2Kðq0Þ � lB becomes

ðf;g; n;pf;pg;pnÞ#ðf;g; n;pf;�pg;pnÞ ð60Þ

or

ðm;l; k;pm;pl;pkÞ#ðm;l; k;pm;�pl; pkÞ; ð61Þ

respectively. Note that, apart from the specular reflection, the motion described in terms of the phase
space coordinates ðŝ; pŝÞ, ŝ 2 fm;l; kg is smooth on the double cover (32).

Expressing the separation constants k and l, or their energy scaled counterparts K :¼ 2mEk and
L :¼ 2mEl, in terms of Cartesian coordinates and momenta gives

K ¼ 1
2
ðjLj2 þ ða2 þ c2Þp2

y þ a2p2
z þ c2p2

x Þ; ð62Þ

L ¼ c2L2
y þ a2L2

z þ a2c2p2
y ; ð63Þ

where Lx, Ly and Lz denote the components of the angular momentum about the origin L ¼ r� p. The
separation constants together with the total energy E ¼ ðp2

x þ p2
y þ p2

z Þ=ð2mÞ give three constants of
motion. Hence, the classical system is integrable, and a modification of the Liouville–Arnold theorem
implies that the six-dimensional phase space is foliated by the common level sets of E, K and L, or
equivalently E, s2

1 and s2
2, which are invariant cylinders.

Like in the 2D case the energy plays no major role since it only determines the speed of the motion
along the straight lines (in configuration space). So, in order to describe the foliation of the energy sur-
faces by the invariant cylinders, it is sufficient to consider the energy surface of a fixed positive energy
E > 0. Other foliations of other energy surfaces are then obtained from a suitable scaling. On such an
energy surface, there are then smooth two parameter families of invariant cylinders parametrized by
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s2
1 and s2

2. The parameterization intervals of these cylinders can be obtained from requiring the mo-
menta (58) to be real and analyzing the disposition of zeroes s2

1 and s2
2 relative to the poles a2 and

c2 in (58). To obtain real momenta, s2
1 and hence s2

2 can only take non-negative values. Similar to
the 2D case, we will therefore occasionally use s1 ¼

ffiffiffiffiffi
s2

1

q
and s2 ¼

ffiffiffiffiffi
s2

2

q
. It then turns out that there

are six different smooth families of invariant cylinders which we denote by BB1, BB2, BB3, WG1,
WG2 and WG3 as shown in the bifurcation diagram in Fig. 6(b) and (c).

In order to describe the motions on the different families of cylinders it is again useful to illustrate
the corresponding effective energies and potential, and phase portraits and also the intersections of
these cylinders with the various Cartesian coordinate planes. This is shown in Figs. 10 and 11, respec-
tively. To simplify the discussion we will consider, like in the 2D case, the specular reflections at the
billiard boundary to be smooth. In the 3D case, this implies that we identify pl and �pl when l ¼ lB

or l ¼ 2Kðq0Þ � lB (see Fig. 10(b)).
For a fixed energy E > 0, a pair ðs2

1; s
2
2Þ (or the corresponding pair ðk; lÞ) in BB1 or BB2 has as its level

set a toroidal cylinder R� T2 which we illustrate in terms of its projection to configuration space in
Fig. 11. It is unbound in the direction of k and the motion is oscillatory in the transverse degrees of
freedom m and l. In BB2, the motion oscillates with reflections at the boundary hyperboloid. The inter-
section of the cylinders of type BB2 with the y–z plane is bounded by the two branches of the hyper-
bolas g ¼ s1, similar to the ‘‘bouncing ball modes” which one finds in the billiard in a planar ellipse
[23].

In contrast to that the motion in BB1, though oscillatory in g and f, does not touch the boundary
hyperboloid, i.e. the corresponding toroidal cylinders are foliated by straight lines of free motions
without reflections. A pair ðs2

1; s
2
2Þ in BB3 represents motion which does not cross the y–z plane. The

corresponding level sets consist of two toroidal cylinders R� T2 which are bounded away from the
y–z plane by the ellipsoid n ¼ s2.

Pairs ðs2
1; s

2
2Þ in WG1 or WG2 involve motions which are rotational in f (or, equivalently, in m). They

represent two toroidal cylinders R� T2 which differ by the sense of rotation (see the corresponding
panels in Fig. 11). In the elliptical cross-section in the x–y plane, the motion WG2 is bounded by the
ellipse g ¼ s1, similar to the ‘‘whispering gallery modes” which one finds in planar elliptic billiards.

1

ν,
V

ef
f

μ,
V

ef
f

λ,
V

0 2K(q)K(q)

2

3

WG 3

2

ef
f

0
μ νλ

z y z yπ π π π
BB

BB

BB

WG

WG

πx

1

0 2K(q’)K(q’)

BB
1

BB
2

BB
3

p
λ

WG
1

p
μ p
ν

WG
2

0
λ

WG
3

μ
B 2K(q’)-μ

Bμ
0 K(q) 2K(q)

ν

(b)(a)

Fig. 10. Effective potentials and energies (a) and phase portraits (b) for constants of motions ðs2
1; s

2
2Þ (or equivalently ðk; lÞ) in the

regions BB1, BB2, BB3, WG1, WG2 and WG3 defined in Fig. 6. For the l degree of freedom, the hatched regions mark the forbidden
regions ½0;lB� and ½2Kðq0Þ � lB ;2Kðq0Þ� which are not contained in the region (3). (ða2; c2Þ ¼ ð3=2;1=2Þ).
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As in the case of BB1, motions in WG1 do not touch the hyperboloidal boundary. The corresponding
toroidal cylinders are again foliated by lines of free motion without reflections. For ðs2

1; s
2
2Þ in WG3

the rotational motions are again bound away from the y–z plane by the ellipsoid n ¼ s2. The corre-
sponding level set consists of four toroidal cylinders which have x > 0 or x < 0 combined with differ-
ent senses of rotation.

The smooth families of cylinders bifurcate along the boundaries of the s2
1 � s2

2 parameterization
intervals in Fig. 6. Along s2

2 ¼ 1, we have the (minor) bifurcation from cylinders consisting reactive tra-
jectories which have reflections at the boundary hyperboloid to cylinders with trajectories having no
reflections.

Fig. 11. Configuration space projections of the invariant cylinders corresponding to the motions BB1, BB2, BB3, WG1, WG2 and
WG3 as their intersections (shaded regions) with the Cartesian coordinate plane. The bold lines mark the intersections of the
boundary hyperboloid (4). The ranges for x, y and z are ½�3=2;3=2�. (ða2; c2Þ ¼ ð3=2;1=2Þ).
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Along s2
1 ¼ c2, the motions bifurcate from bouncing ball to whispering gallery type. Note that the

distinction between BB1 and WG1 is only ‘‘artificial”. They both consists of free motions (without
reflections). For such motions, there are more constants of motion than degrees of freedom (the free
motion can be separated in several coordinate systems). In such so-called superintegrable systems (a
multidimensional harmonic oscillator is a simple example) the foliation by invariant cylinders (or
equivalently invariant tori in the case of a compact system like a harmonic oscillator), is therefore
not uniquely defined [29].

Most importantly for the reaction dynamics is the bifurcation from non-reactive motions to reac-
tive motions along s2

2 ¼ a2. In fact, the joint level set of the two constants of motion E and s2
2 for a fixed

E > 0 and s2
2 ¼ a2 consists of the energy surface of the unstable invariant two-degree-of-freedom sub-

system which consists of the billiard in the bottleneck ellipse which has x ¼ 0 and px ¼ 0 and its stable
and unstable manifolds. We illustrate the foliation of this level set in Fig. 12. The two-degree-of-free-
dom billiard in the bottleneck ellipse can be viewed to form the transition state for the 3D system. The
transition state at energy E is then given by

TS ¼ ðx; y; z; px; py; pzÞ 2 R6 : x ¼ 0; px ¼ 0; y2 þ z2

~c2 6 1; p2
y þ p2

z ¼ 2mE
	 


: ð64Þ

The billiard in an ellipse is foliated by two different smooth families of two-dimensional tori T2 which
in this case are parameterized by s2

1. For 0 < s2
1 < c2, these tori are of bouncing ball type, and for

c2 < s2
1 < 1, the tori are of whispering gallery type. The bifurcation between theses two families at

s2
1 ¼ c2 involves the unstable periodic orbit along the major axis of the bottleneck ellipse. At s2

1 ¼ 0,
the bouncing ball tori degenerate to the stable periodic orbit along the minor axis of the ellipse. At
s2

1 ¼ 1, the whispering gallery motions degenerate to the two periodic orbits sliding along the perim-
eter of the ellipse in opposite directions (see [23] for a detailed discussion). Regarding the specular
reflections to be smooth, the energy surface of this invariant subsystem forms a three-dimensional
sphere, S3. In the full original 3D system this sphere is unstable with respect to the transverse direc-
tions parametrized by k and pk and therefore has stable and unstable manifolds Ws and Wu which are
also contained in the level set (see the lines in the k–pk plane in the left panel of Fig. 12). The topology
of Ws and Wu can be inferred from taking the Cartesian product of the 3-sphere of the invariant sub-
system with the lines in the k–pk plane in the left panel of Fig. 12, i.e. the stable and unstable manifolds
have topology R� S

3. Like in the case of the 2D system discussed in Section 4.1, these stable and
unstable manifolds are again of codimension 1 in the energy surface. This way they again have suffi-
cient dimensionality to act as separatrices, and in fact they again separate the reactive trajectories
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Fig. 12. Foliation of the level set E ¼ const: > 0, s2
2 ¼ a2 which consists of the invariant billiard in the bottleneck ellipse that

forms the transition state of the 3D system, and its stable and unstable manifolds with branches Ws
f=b and Wu

f=b, respectively. In
the k–pk phase plane the invariant billiard appears as the dot at the origin. The corresponding phase curves in the l–pl plane
and m–pm plane are parametrized by s2

1 2 ½0;1�. For 0 < s2
1 < c2, the phase curves are of bouncing ball type (green dashed curves);

for c2 < s2
1 < 1, the phase curves are of whispering gallery type (blue dashed curves). The separatrix between bouncing ball and

whispering gallery motions has s2
1 ¼ c2 (red dashed curves in the right panels). Note that the two pieces of the phase space curve

corresponding to the bouncing ball motion are mapped onto each other by the involution (34).
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from the non-reactive trajectories. Similar to the case of the 2D system described in Section 4.1 the
manifolds Ws and Wu again each have two branches. We again denote the branch of Ws which has
pk > 0 (resp. pk < 0) the forward (resp. backward) branch, Ws

f (resp. Ws
b), of the stable manifold. Sim-

ilarly, we again denote the branch of Wu which has pk > 0 (resp. pk < 0) theforward (resp. backward)
branch, Wu

f (resp. Wu
b) of the unstable manifold (see Fig. 12). Also, we again call the union of the for-

ward banches,

Wf :¼Ws
f [Wu

f ; ð65Þ

the forward reactive cylinder, and the union of the backward branches,

Wb :¼Ws
b [Wu

b; ð66Þ

the backward reactive cylinder. These forward and backward reactive cylinders then again enclose the
forward and reactive trajectories, respectively, and separate them from the non-reactive trajectories in
the energy surface under consideration.

Moreover, we can define a dividing surface DS by setting x ¼ 0 on the energy surface which gives

DS ¼ ðx; y; z;px;py;pzÞ 2 R6 : x ¼ 0; y2 þ z2

~c2 6 1;p2
x þ p2

y þ p2
z ¼ 2mE

	 

: ð67Þ

With our convention to consider the specular reflections to be smooth the dividing surface DS has the
topology of a four-dimensional sphere, S

4. Similar to the situation in the 2D system the three-dimen-
sional sphere associated with the transition state TS in (64) can again be viewed to form the equator of
the DS 4-sphere. In fact the transition state TS divides the dividing surface into two hemispheres, the
forward dividing surface

DSf ¼ ðx; y; z; px; py; pzÞ 2 R3 � R3 : x ¼ 0; y2 þ z2

~c2 6 1;p2
x þ p2

y þ p2
z ¼ 2mE;px > 0

	 

: ð68Þ

and the backward dividing surface

DSb ¼ ðx; y; z; px; py; pzÞ 2 R3 � R3 : x ¼ 0; y2 þ z2

~c2 6 1;p2
x þ p2

y þ p2
z ¼ 2mE;px < 0

	 

: ð69Þ

Each forward reactive trajectory has a single intersection with the forward hemisphere; each back-
ward reactive trajectory has a single intersection with the backward hemisphere. Non-reactive trajec-
tories do not intersect the dividing surface DS at all. Like in the 2D case, the dividing surface is
everywhere transverse to the Hamiltonian flow apart from its equator which is an invariant manifold.

4.2.2. Action integrals
As we have seen in the previous section, the phase space of the 3D system is foliated by six different

families of invariant toroidal cylincers, R� T2. For the toroidal base, which is associated with the de-
grees of freedom f and g (or equivalently m and l), we can again define action-angle variables. The ac-
tions in this case are given by

Is ¼
1

2p

I
psds ¼

ffiffiffiffiffiffiffiffiffiffi
2mE
p ms

2p

Z sþ

s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 � 2ks2 þ l

ðs2 � a2Þðs2 � c2Þ

s
ds

¼
ffiffiffiffiffiffiffiffiffiffi
2mE
p ms

2p

Z sþ

s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 � s2

1Þðs2 � s2
2Þ

ðs2 � a2Þðs2 � c2Þ

s
ds; ð70Þ

with s 2 ff;gg and the ps being taken from (58). The integers ms and the integration boundaries s� and
sþ can be found in Table 1.

For the actions of the symmetry reduced system, which we again denote by eIs, we always have
ms ¼ 2, s 2 ff;gg, i.e.

eIs ¼
ffiffiffiffiffiffiffiffiffiffi
2mE
p 1

p

Z sþ

s�

psds: ð71Þ
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Substituting z ¼ s2 in Eq. (70) shows that the action integrals If and Ig are both of the form

Is ¼
ffiffiffiffiffiffiffiffiffiffi
2mE
p ms

4p

Z zþ

z�

ðz� s2
1Þðz� s2

2Þ
wðzÞ dz; ð72Þ

where

w2ðzÞ ¼ P5ðzÞ :¼
Y5

i¼1

ðz� ziÞ; ð73Þ

and z� and zþ are consecutive elements of the set fz1 ¼ 0; z2 ¼ s2
1; z3 ¼ b2

; z4 ¼ s2
2; z5 ¼ a2; zb ¼ 1g.

Again zb ¼ 1 corresponds to the boundary hyperboloid. The differential dz=wðzÞ has the six critical
points fz1; z2; z3; z4; z5;1gwhich means that the integrals (72) are hyperelliptic. There do not exist tab-
ulated standard forms for these integrals like for the elliptic integrals (52) in the case of the 2D system.
However, we can again view them as Abelian integrals, which in this case are defined on the hyper-
elliptic curve

Cw ¼ fðz;wÞ 2 C2 : w2 ¼ P5ðzÞg; ð74Þ

which is an algebraic curve of genus 2. The integrals (72) then become

Is ¼
ffiffiffiffiffiffiffiffiffiffi
2mE
p ms

8p

Z
cs

ðz� s2
1Þðz� s2

2Þ
dz
w
; ð75Þ

where s 2 ff;gg and the integration paths cf and cg for motions of type WG2 and BB2 are shown in
Fig. 13. For motions of type WG3 and BB3, the order of s2

2 and a2 along the real axis in Fig. 13 is reversed
which does not affect the definitions of cf and cg. The integration path cf is a closed path on Cw, and
hence the integral If is a complete hyperelliptic integral. Due to the billiard boundary, the integration
path cg is not closed; the integral Ig is an incomplete hyperelliptic integral.

Similarly to (56), we can also define a closed hyperelliptic integral associated with n,

In ¼ i
ffiffiffiffiffiffiffiffiffiffi
2mE
p 1

2p

Z
cn

ðz� s2
1Þðz� s2

2Þ
dz
w
; ð76Þ

where cn for motions of type WG2 and BB2 is defined in Fig. 13 and leads to a real positive In for these
motions. For motions of type WG3 and BB3, the order of s2

2 and a2 along the real axis in Fig. 13 is re-
versed, and In becomes real negative.

Moreover, we define the integral

Ifg ¼ i
ffiffiffiffiffiffiffiffiffiffi
2mE
p 1

p

Z
cfg

ðz� z1Þðz� z2Þ
dz
w
; ð77Þ

where cfg for WG2 and BB2 is also defined in Fig. 13. The change of the order of s2
2 and a2 again does not

affect the definition of cfg. This way we get a real positive Ifg for WG2/3 and a real negative Ifg for BB2/3.
The integrals In and Ifg will play an important role in Sections 5 and 6.

Table 1
Integration boundaries, s� and sþ , and multipliers ms in (70) for the six types of 3D motion BB1, BB2, BB3, WG1, WG2 and WG3.

Type mf mg f� fþ g� gþ

BB1 4 4 0 s1 c s2

BB2 4 4 0 s1 c 1
BB3 4 4 0 s1 c 1
WG1 4 2 0 c s1 s2

WG2 4 2 0 c s1 1
WG3 4 2 0 c s1 1
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5. Computation of the classical and quantum transmission from transition state theory

In this section, we compute the transmission probabilities for the classical and quantum transport
from the regions x� �1 (the ‘‘reactants” region) to the region x� 1 (the ‘‘products” region) in the
geometries (1) (2D) and (3) (3D). In the quantum case, we are interested in the cumulative reaction
probability which is defined as

NðEÞ ¼ Tr bT ðEÞbT yðEÞ; ð78Þ

where bT ðEÞ is the transmission block of the scattering matrix at energy E (for references in the chem-
istry literature see, e.g., [30]; in the context of ballistic electron transport problems (78) is known as
the Landauer–Büttiker formula [31–33]).

According to its definition, NðEÞ can be computed from the scattering matrix. However, this is a
very inefficient (and for the systems with many degrees of freedom even infeasible) procedure since
one has to determine all the state-to-state reactivities while NðEÞ is merely a sum over these reactiv-
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Fig. 13. (a) The graph of the polynomial P5ðzÞ defined in (74) for real separation constants s2
1 and s2

2 satisfying
c2 < s2

1 < 1 < s2
2 < a2 (motion type WG2). (b)–(e) Complex planes with definitions of the integration paths cf , cg , cn and cfg ,

along which If , Ig , In and Ifg in ()()()(75)–(77) are computed; (b), (c) are for real s2
1 and s2

2 (scattering states of type WG2 and BB2,
respectively), and (d), (e) are the corresponding continuations of (b) and (c) when s2

1 and s2
2 leave the real axis (resonance states).

Similarly to Fig. 9, the complex planes can be viewed as one half of the hyperelliptic curve Cw (the Riemann sheet of one ‘‘sign”
of the square root w). To make the square root w well defined in the complex plane three branch cuts connecting consecutive
branch points of w are introduced (bold lines). The left cut connects the branch points 0 and1; the middle cut connects c2 and
s2

1; the right one connects s2
2 and a2. The integration paths cfg and cn are closed loops which encircle the middle and right branch

cuts, respectively. The integration path cf is also a closed loop of Cw . In the picture shown it consists of two parts. It starts at
either z ¼ c2 (WG) or z ¼ s2

1 (BB) on the other Riemann sheet of w (which is a copy of the one shown and which joins the copy
shown at the branch cuts) and intersects the branch cut between 0 and1. This part is marked by a dashed line. The integration
path then continues on the shown Riemann sheet where it ends at either z ¼ c2 (WG) or z ¼ s2

1 (BB). The integration path cg also
has two parts. It starts at z ¼ 1 on the other Riemann sheet of w and intersects the branch cut between c2 and s2

1. This part is
marked by a dashed line. The integration path continues on the shown Riemann sheet where it ends at the point 1. Like in Fig. 9
the signs + or � indicate whether w ¼ þi j w j or w ¼ �i j w j ‘‘just above” or ‘‘just below” the respective branch cut.
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ities and hence no longer contains information about the individual state-to-state reactivities. Much
effort has been and still is put into finding a computationally cheap method to compute NðEÞ. In
the chemistry literature (see, e.g., [34,35,30]), a method has been developed to compute NðEÞ on the
basis of transition state theory where the classical transmission probability is computed from the flux
through a dividing surface which for a given energy E separates the energy surface into a reactants and
a products region. For such a dividing surface DS, the flux from reactants to products can be computed
as

f ðEÞ ¼
Z

Rf

Z
Rf

dðE� Hðq; pÞÞFðq;pÞPrðq;pÞdf qdf p: ð79Þ

Describing the dividing surface by a zero level set of a function s on phase space, or more precisely a
function which is negative on the reactants side of the dividing surface and positive on the products
side of the dividing surface, F in (79) is defined as the following composition of functions:

Fðq;pÞ ¼ d
dt

H � s �Ut
Hðq;pÞ

��
t¼0 ¼ dðsðq; pÞÞfs;Hgðq;pÞ: ð80Þ

Here, H denotes the Heaviside step function, Ut
H is the Hamiltonian flow generated by H acting for the

time t, and f�; �g denotes the Poisson bracket. The function Pr in (79) is defined as

Prðq; pÞ ¼ lim
t!1

H � s �Ut
Hðq;pÞ; ð81Þ

which acts as a characteristic function on the dividing surface. In fact, by construction Prðq; pÞ ¼ 1 if
the trajectory through the point ðq; pÞ proceeds for t !1 to products which is the region where
the function s is positive and Prðq; pÞ ¼ 0 otherwise (see [8] for a detailed discussion).

The quantum analog of (79) is given by

NðEÞ ¼ 2p�hTrdðE� bHÞbF bPr ; ð82Þ

where

bF ¼ � i
�h
½ dH � s; bH� ð83Þ

and

bPr ¼ lim
t!1

e
i
�h
bHt dH � se�

i
�h
bHt: ð84Þ

Here, dH � s denotes a quantization of the classical function H � s [8].
Like its classical analog (79), the evaluation of (82) involves a computationally expensive time inte-

gration which is manifested in (81) and (84), respectively. The computational advantage of the tran-
sition state theoretical formulation of NðEÞ over the original definition in (78) is therefore not obvious.
In practice, one can carry out the time integration only to a finite time. This time has to be large en-
ough so that it can be decided that after this time the resulting trajectory (classical) or wavefunction
(quantum) will stay in the products region. In order to minimize this integration time one has to
choose a ‘‘good” dividing surface. In fact, for a dividing surface that, classically, is crossed exactly once
by all reactive trajectories and not crossed at all by non-reactive trajectories (see our discussion in Sec-
tion 4) no time integration is required at all. The characterestic function Pr in (81) can then be replaced
by a function which at a point ðq; pÞ on the dividing surface is one if the Hamiltonian vector field at this
point pierces the dividing surface in the forward direction and zero if the Hamiltonian vector field at
that point pierces the dividing surface in the backward direction. In other words, this means that we
can omit the function Pr in (82) and restrict the integral (82) to the foward hemisphere of the dividing
surfaces that we constructed in Section 4. The choice of a good dividing surface is thus crucial to ben-
efit from the transition state theoretical approach to compute classical and quantum transmission
probabilities.

In Section 4, we used the separability of the transmission problem discussed in this paper to con-
struct the dividing surface which has the desired properties. As a consequence of this separability, we
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similarly get in the quantum mechanical case that the transmission subblock of the scattering matrix
in (78) is diagonal. Using

tnmðEÞ ¼ tnðEÞdnm; ð85Þ

where n and m label the scattering states at the energy E, and dnm is the Kronecker symbol we have

NðEÞ ¼
X

n

TnðEÞ; ð86Þ

with the state-to-state transmission probabilities defined as TnðEÞ :¼j tnnðEÞj2. In the following, we
present the computation of these transmission probabilites and the comparison of the resulting cumu-
lative reaction probabilities with the classical flux.

5.1. The 2D system

5.1.1. The quantum transmission
To compute the transmission probabilities Tn in the 2D case, we look for solutions of the form

wf;nðfÞwn;nðnÞ þ rnwf;nðfÞw�n;nðnÞ ð87Þ

at the bottom (x� �1) and

tnwf;nðfÞw�n;nðnÞ ð88Þ

at the top (x� 1). Such solutions can be computed from first solving the transversal component f of
the wave equations (11) for the corresponding boundary conditions with E as a parameter. As dis-
cussed in Section 3, the boundary conditions for wf at f ¼ 0 is determined by the paritiy py. For
py ¼ þ, we have w0fð0Þ ¼ 0 (and choose wfð0Þ ¼ 1), and for py ¼ �, we have wfð0Þ ¼ 0 (and choose
w0fð0Þ ¼ 1). The Dirichlet boundary condition at f ¼ 1 requires wfð1Þ ¼ 0. This way we obtain modes
which we label by the Dirac ‘‘kets” j nf;pyi where nf is a non-negative quantum number which gives
the number of nodes of wf in the open interval 0 < f < 1. The modes of energy E determine the sep-
aration constants s2

2ðnf ;pyÞðEÞ. This separation constant can then be used in the equation for the n com-
ponent of the separated wave equations (11) to find solutions of the form (87) and (88). This, however,
is not completely straightforward and does not give much insight into the structure of the solutions.
We therefore resort to a semiclassical computation which will also lead to the semiclassical compu-
tation of resonances as we will discuss in Section 6. The semiclassical approximation is obtained from
using s2

2ðnf ;pyÞðEÞ to compute the transmission probability Tðnf ;pyÞðEÞ as

ðaÞTðnf ;pyÞðEÞ ¼
1

1þ expðhðnf ;pyÞðEÞ=�hÞ
; ð89Þ

where hðnf ;pyÞ is a tunnel integral. This tunnel integral describes the quantum mechanical tunneling
through the dynamical barrier which in terms of the k coordinate occurs as the barrier in the associ-
ated effective potential Vk;eff for motions of type T3 (see Fig. 7). This tunnel integral is given by

hðnf ;pyÞðEÞ ¼ �2i
Z kþ

k�

pk dk ¼ �4i
ffiffiffiffiffiffiffiffiffiffi
2mE
p Z s2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � s2

2ðEÞ
n2 � a2

s
dn; ð90Þ

where s2
2 ¼ s2

2ðnf ;pyÞðEÞ and kþ and k� ¼ �kþ are the corresponding turning points using the phase space
coordinates ðk; pkÞ (see, e.g., [36] for a derivation of the expression (89)). For s2

2 > a2 or equivalently
Ek;eff < Vk;eff ð0Þ which corresponds to classical reflection of type T3, pk is imaginary along the integra-
tion interval which is bounded by the real classical turning points k� and kþ ¼ �k�. This integral can
be identified with two-times the integral of pn from a to the corresponding turning point s2 which
gives the second equality in (90). For s2

2 < a2 or equivalently Ek;eff > Vk;eff ð0Þwhich corresponds to clas-
sical transmission of types T2 and T3, the classical turning points k� become imaginary (with k� being
complex conjugate to kþ) whereas pk is real on the imaginary axis between k�. The branches of the
square root in (90) are chosen such that the tunnel integral is positive if a2 < s2

2 and negative if
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s2
2 < a2. This choice of the branches can be described more precisely from relating hðnf ;pyÞðEÞ to the inte-

gral In that we defined in (56). In fact, we have

In ¼ �
1

2p
hðnf ;pyÞðEÞ: ð91Þ

The boundary value problem for wf can be solved numerically using a shooting method which relates
the solution of the boundary value problem to a Newton procedure (see [37], and [23,22] for similar
applications). Since wf is an oscillatory function which leads to multiple zeroes in the resulting Newton
procedure the shooting method requires good starting values s2

2. These are obtained from a semiclas-
sical approximation also of the boundary value problem for wf. To this end, we note that the phase
portraits of the motions of type T2 and T3 between which the classical motion switches from transmis-
sion to reflection are identical in the m� pm plane (see Fig. 7)(b). For these types of motions, we can
thus use the EBK quantization condition for the action If,

If ¼ �hðnm þ 1Þ; nm 2 N0; ð92Þ

which is the same as the EBK quantization of a one-dimensional square well problem. We can also re-
write this quantization condition in terms of the action eIf ¼ If=2 of the symmetry reduced system
which gives

eIf ¼ �h nf þ
1
4
ð3� pyÞ

� �
; nf 2 N0: ð93Þ

This decomposes the semiclassical modes in terms of the parity py. The quantum numbers nf and nm

are related by

nm ¼ 2ng þ
1
2
ð1� pyÞ: ð94Þ

We note that for the type T1 the motions involve a smooth rather than a hard wall reflection in the m
degree of freedom. As a result, the EBK quantization for T1 would be different from the EBK quantiza-
tion for T2 and T3, and hence, in order to describe the transition from T2 to T1 a uniform semiclassical
quantization scheme would be desirable. However, this transition plays no role for the transition from
transmission to reflection (see below) and we therefore do not consider this aspect in more detail. The
quantization condition (92) can be solved by a standard Newton procedure. The solutions for E and s2

2

for a given quantum number nf and parity py are then used as the starting value for the shooting
method described above.

The cumulative reaction probability NðEÞ is then the sum over all the Tðnf ;pyÞðEÞ in (89) for all quan-
tum numbers nf and parities py. For the numerical computation of NðEÞ, we need only consider the
finite number of modes which, at a value E > 0, have a non-negligibile transmission probability. A
graph of NðEÞ is shown in Fig. 14. We note that on the scale of the picture one can notice no difference
between the exact and the semiclassically computed NðEÞ. Depending on the shape parameter a2 for
the boundary hyperbola the cumulative reaction probability shows more or less pronounced steps
with unit step size. A detailed analysis of the graphs of NðEÞ can be obtained from relating the modes
j nf;pyi to the classical motions. For a given energy E, this relationship is established via the separation
constant s2

2ðnf ;pyÞðEÞ which determines the classical invariant cylinder the mode is associated with. As
can be seen from the projections of the cylinders in Fig. 8, these projections become increasingly con-
fined in the order T3 ! T2 ! T1. Since high confinement in configuration space implies high kinetic
energy via the Heisenberg uncertainty principle, the modes, which classically correspond to the type
of motion T1 have highest energy. In fact, for low energies all modes have s2

2ðnf ;pyÞðEÞ in the classically
reflecting type of motion T3. Upon increasing the energy, the s2

2ðnf ;pyÞðEÞ wander towards the transmit-
ting mode T2, and for even higher energy to T1, see Fig. 6(a). Concerning the classical mechanics, the
border between reflection and transmission is given by s2

2 ¼ a2. This border is crossed for the modes
j nf;pyi for different energies. Upon crossing the border, the tunnel integral (90) changes sign and
the transmission probability (89) changes from 0 to 1. The energy for which the tunnel integral of a
given mode j nf;pyi is zero, and hence gives Tðnf ;pyÞðEÞ ¼ 1=2, can be defined as the energy at which
the mode ‘‘opens” as a transmission channel. Marking these energies on the energy axis in Fig. 14,
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we see in which order the transmission channels open and this way contribute a step of NðEÞ. Semi-
classically these ‘‘opening” energies are identical to the eigenenergies of a square well.

5.1.2. The classical transmission
The classical transmission probability can be computed from the directional flux through the divid-

ing surface DS of energy E defined in (46), or following our discussion at the beginning of this section
by an integral over the forward hemisphere DSf of this dividing surface. In a more modern notation
which also reveals the symplectic nature of the flux (see [38,39] and also [40]), the flux is given by

f ðEÞ ¼
Z

DSf

x; ð95Þ

where x is the symplectic 2-form

x ¼ dx ^ dpx þ dy ^ dpy: ð96Þ

Since x ¼ d/ where / is the Liouville 1-form

/ ¼ px dxþ py dy ð97Þ

we can utilize Stokes’ theorem to compute f ðEÞ from integrating / over the boundary of the forward
hemisphere DSf. Using the fact that the boundary of DSf is given by the transition state TS consisting of
the periodic orbit along the y axis at energy E (see Section 4.1) we find that the flux is given by the
Liouville action of the periodic orbit,

f ðEÞ ¼
Z

TS
/ ¼ 4

ffiffiffiffiffiffiffiffiffiffi
2mE
p

: ð98Þ

Fig. 14. (top panel) Cumulative reaction probability NðEÞ as a function of the wavenumber j ¼
ffiffiffiffiffiffiffiffiffiffi
2mE
p

=�h for the shape
parameter a2 ¼ 5, and, for comparison, a2 ¼ 1, which corresponds to the transmission through a rectangular strip. The ticks on
the wavenumber axis mark the energies at which, for a2 ¼ 5, the modes j nf;pyi ‘‘open” as transmission channels (see text) (the
key to the tick labels is given in the table). The smooth dot-dashed blue curve and the solid blue curve show the Weyl
approximations of NðEÞ defined in (99) and (100), respectively. (bottom panel) Resonances in the complex wavenumber (j)
plane, for a2 ¼ 5. Semiclassical resonances are marked by pluses (þ) and exact resonances by diamonds (�). Note that we use
the symbol j for wavenumber to distinguish it from the separation constant k of the 3D system. (�h ¼ 1;m ¼ 1).
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In order to make the comparison to the cumulative reaction probability NðEÞ, we consider the dimen-
sionless quantity

NWeylðEÞ ¼
1

2p�h
f ðEÞ; ð99Þ

which is shown together with NðEÞ in Fig. 14. We see that NWeylðEÞ gives an approximate smooth local
average of NðEÞwhich, however, overestimates the local average of NðEÞ as the graph of NWeylðEÞ inter-
sects the graph of NðEÞ at the top of its steps. In fact disregarding the tunneling, NðEÞ simply gives the
integrated density of states of the transition state or activated complex (the one-dimensional square
well along the y axis) to energy E. The term NWeylðEÞ is the Weyl approximation of this quantity. As also
shown in Fig. 14 one can obtain a better local average by modifying NWeylðEÞ to

eNWeylðEÞ ¼
1

2p�h
f ðEÞ � 1

2
; ð100Þ

which can be formally derived from counting the mean number of states to energy E in a one-dimen-
sional square well potential.

5.2. The 3D system

5.2.1. The quantum transmission
To compute the transmission probabilities Tn in the 3D case, we look for solutions of the form

wf;nðfÞwg;nðgÞwn;nðnÞ þ rnwf;nðfÞwg;nðgÞw�n;nðnÞ ð101Þ

at the bottom (x� �1) and

tnwf;nðfÞwg;nðgÞw�n;nðnÞ ð102Þ

at the top (x� 1). In this case, we first solve the components of the separated wave equations (24) and
the corresponding boundary conditions which belong to the transversal coordinates f and g with the
energy E as a parameter. The boundary conditions for wg are given by the parity pz which yields the
index of wg at g ¼ c and the Dirichlet boundary condition wgð1Þ ¼ 0. The boundary conditions for wf

are determined by the parities pz and py: pz determines the index of wf at f ¼ c and py determines
whether w0fð0Þ ¼ 0, wfð0Þ ¼ 1 (py ¼ þ) or wfð0Þ ¼ 0, w0fð0Þ ¼ 1 (py ¼ �). This way we obtain modes that
are parametrized by E and which we label by the Dirac kets j nf;ng;py;pzi, where nf and ng are non-
negative quantum numbers which give the number of nodes of wg and wf in the open intervals
c < g < 1 and 0 < f < c, respectively. The modes for energy E determine the separation constants
ðkðnf ;ng ;py ;pzÞðEÞ; lðnf ;ng ;py ;pzÞðEÞÞ. These can then be used in the n component of the equations (24) to find
solutions of the form (101) and (102). Like in the 2D case, we resort to a semiclassical computation of
the transmission probabilities instead. Analogously to (89), we obtain

Tðnf ;ng ;py ;pzÞðEÞ ¼
1

1þ expðhðnf ;ng ;py ;pzÞðEÞ=�hÞ
; ð103Þ

where hðnf ;ng ;py ;pzÞðEÞ is the tunnel integral

hðnf ;ng ;py ;pzÞðEÞ ¼ �2i
Z kþ

k�

pk dk ð104Þ

¼ �4i
ffiffiffiffiffiffiffiffiffiffi
2mE
p Z s2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4 � 2kðnf ;ng ;py ;pzÞðEÞn2 þ lðnf ;ng ;py ;pzÞðEÞ

ðn2 � a2Þðn2 � c2Þ

s
dn;

which describes the tunneling through the potential barrier of the effective potential Vk;eff for types of
motion WG2/3 and BB2/3 (see the corresponding phase portraits in Fig. 10). The branches of the square
root in (104) are again chosen in such a way that the tunnel integral is positive if a2 < s2

2 (correspond-
ing to classical reflection of type WG3 or BB3) and negative if s2

2 < a2 (corresponding to classical trans-
mission of type WG2 or BB2). We can again make this more precise by relating hðnf ;ng ;py ;pzÞðEÞ to the
integral In that we defined in (76). This gives
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In ¼ �
1

2p
hðnf ;ng ;py ;pzÞðEÞ: ð105Þ

Like in the case of the 2D system, we solve the boundary value problems for wf and wg by a shooting
method. To this end, we again need good starting values for the separation constants lðnf ;ng ;py ;pzÞðEÞ and
kðnf ;ng ;py ;pzÞðEÞwhich we obtain from a semiclassical computation. In contrast to the 2D system, we here
face the problem that the types of motion WG2/3 and BB2/3 differ with respect to their degrees of free-
dom f and g, or equivalently m and l (see the corresponding phase portraits in Fig. 10). Accordingly,
the EBK quantizations of the actions are different. The conditions are

Im ¼ nm þ
2
4

� �
�h; Il ¼ nl þ

4
4

� �
�h ð106Þ

for the bouncing ball motions of type BB2/3, and

Im ¼ nm þ
0
4

� �
�h; Il ¼ nl þ

3
4

� �
�h ð107Þ

for the whispering gallery motions of type WG2/3. Writing these EBK quantization conditions in terms
of the actions of the symmetry reduced system, one finds

eIf ¼ nf þ
1
4
ð2� pyÞ

� �
�h; eIg ¼ ng þ

1
4
ð3� pzÞ

� �
�h ð108Þ

for the bouncing ball motions of type BB2/3, and

eIf ¼ nf þ
1
4
ð2� py � pzÞ

� �
�h; eIg ¼ ng þ

1
4
ð3Þ

� �
�h ð109Þ

for the whispering gallery motions of type WG2/3. The quantum numbers ðnm;nlÞ of the full system and
the quantum numbers ðnf;ngÞ of the symmetry reduced system are related by

nm ¼ 2nf þ
1
2
ð2� pyÞ; nl ¼ 2ng þ

1
2
ð1� pzÞ; ð110Þ

for the bouncing ball motions and

nm ¼ 2nf þ
1
2
ð2� py � pzÞ; nl ¼ ng; ð111Þ

for the whispering gallery motions. We can overcome this problem of differing quantization condi-
tions by introducing a uniform quantization of the actions If and Ig which interpolates the EBK quan-
tizations in the regions BB2/3 and WG2/3 in a smooth way. Using ideas similar to [22] one finds that
(108) and (109) can be written in the uniform way

eIf ¼ nf þ
af

4

� �
�h; eIg ¼ ng þ

ag

4

� �
�h; ð112Þ

where again nf;ng 2 N0, and af and ag are ‘‘effective Maslov indices” given by

af ¼ pz
2
p

arctan ehf=�h þ 2� py � pz; ð113Þ

ag ¼ pz
2
p

arctan ehg=�h þ 3� pz: ð114Þ

Here, hf and hg are again tunnel integrals which in this case describe the tunneling through the barriers
of the effective potentials Vm;eff and Vl;eff in Fig. 10 that one needs to overcome to change between
whispering gallery and bouncing ball type motions (see [23] for more details). The tunnel integrals
hf and hg are again best described as integrals on the hyperelliptic curve Cw in (74). Interestingly,
hf ¼ �hg and

hf ¼ �hg ¼ �
1

2p
Ifg; ð115Þ
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where Ifg is the integral we defined in (77). For hf ¼ �hg � �h, and using (110), one recovers the quan-
tization conditions for the bouncing ball type motions in (106); for �hf ¼ hg � �h, and using (111), one
recovers the quantization conditions for the whispering gallery type motions in (107).

In contrast to the other motions, we note that the types of motion BB1 and WG1 involve a smooth
rather than a hard wall reflection in the l degree of freedom which leads to yet another set of EBK
quantization conditions. However, as we will see below, for the energies under considerations BB1

and WG1 play no role for the transmission problem (see the discussion for the analogous effect in
the 2D in Section 5.1.1). The uniform quantization conditions (112) can be solved by a standard New-
ton procedure. The resulting values for s2

1 and s2
2 for given quantum numbers nf and ng, and parities py

and pz, are then used as the starting values for the shooting method to solve the f and g components of
the wave equations as described above, and hence to compute the transmission probability in (103).
The cumulative reaction probability NðEÞ is the sum over all these transmission probabilities. As in the
2D case, to numerically compute NðEÞ we need only consider the finite number of modes which, at a
value E > 0, have a non-negleglibile transmission probability. A graph of NðEÞ is shown in Fig. 15.

Fig. 15. (top panel) Cumulative reaction probability NðEÞ as a function of the wavenumber j ¼
ffiffiffiffiffiffiffiffiffiffi
2mE
p

=�h for shape parameters
ða2; c2Þ ¼ ð5; 0:2Þ, and, for comparison, ða2; c2Þ ¼ ð1;0:2Þ, which corresponds to the transmission through a cylinder with
elliptical cross-section. The ticks on the wavenumber axis mark the energies at which, for ða2; c2Þ ¼ ð5;0:2Þ, the transmission
channels j nf;ng; py;pzi ‘‘open” (see text) (the key to the tick labels is given in the table). For pairs of near degenerate states the
one corresponding to the higher wavenumber is marked above the j axis. The smooth dot-dashed blue curve and the solid blue
curve are the Weyl approximations of NðEÞ defined in (125) and (126), respectively. (bottom panel) Resonances in the complex
wavenumber (j) plane, for a2 ¼ 5. Semiclassical resonances are marked by pluses (þ) and exact resonances by diamonds (�).
Note that we use the symbol j for wavenumber to distinguish it from separation constant k. (�h ¼ 1;m ¼ 1).
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Depending on the shape parameters ða2; c2Þ for the boundary hyperboloid the cumulative reaction
probability shows more or less pronounced steps which in contrast to the 2D case (see Fig. 14) are
of size 1 or 2. This can be understood in more detail if we relate the modes j nf;ng;py;pzi to the clas-
sical motions. For a given energy E, this relationship is established via the separation constants
ðkðnf ;ng ;py ;pzÞðEÞ; lðnf ;ng ;py ;pzÞðEÞÞ which determine the corresponding toroidal cylinders. The wave func-
tions of the modes j nf;ng;py;pzi are mainly ‘‘concentrated” on the projections of the corresponding
toroidal cylinders to configuration space. As can be seen in Fig. 11, for the whispering gallery types
of motion, these projections become increasingly confined in the order WG3 !WG2 !WG1. For
the bouncing ball types of motion, the confinement increases in the order BB3 ! BB2 ! BB1. Since
high confinement in configuration space implies high kinetic energy via the Heisenberg uncertainty
principle, the modes, which classically correspond to the types of motion WG1 or BB1, have highest
energy. In fact, for low energies all modes have ðkðnf ;ng ;py ;pzÞðEÞ; lðnf ;ng ;py ;pzÞðEÞÞ in the classically reflective
types of motion WG3 or BB3. Upon increasing the energy the ðkðnf ;ng ;py ;pzÞðEÞ; lðnf ;ng ;py ;pzÞðEÞÞ wander to-
wards the transmitting modes WG2 or BB2, and for even higher energy to WG1 or BB1, see Fig. 6. Con-
cerning the classical mechanics, the border between reflection and transmission is given by s2

2 ¼ a2 or
l ¼ k2 � ða2 � kÞ2. This border is crossed for the modes j nf;ng;py;pzi for different energies. Upon
crossing the border the tunnel integral changes sign and the transmission probability changes from
0 to 1. The energy for which the tunnel integral of a given mode j nf;ng;py;pzi is zero, and hence gives
T ðnf ;ng ;py ;pzÞðEÞ ¼ 1=2, can be defined can be defined as the energy at which the mode opens as a trans-
mission channel (see the analogous definition for the 2D case). These energies are marked on the en-
ergy axis in Fig. 15. Semiclassically, these opening energies are identical to the eigenenergies of the
ellipse billiard.

Classically, the border s2
2 ¼ a2 corresponds to the unstable invariant motion in the y–z plane. This is

the planar billiard in the bottleneck ellipse which is an invariant subsystem with one degree of free-
dom less than the full three-dimensional billiard.

Due to the dynamical barrier the wave functions of the modes deep in the reflective types of mo-
tion WG3 and BB3 have negligible amplitudes in the y–z plane. As the energy increases the increase of
the amplitudes is indicated by the switching of the corresponding transmission probability T ðnf ;ng ;py ;pzÞ
from 0 to 1, i.e. the ‘‘opening” of a new transmission channel. The wave functions of the transmission
channels which lead to the step in Fig. 15 are shown in Fig. 17 as their intersection with the y–z plane.

The quantum mechanical manifestation of the two senses of rotation in the whispering gallery
types of motion is the energetic quasi-degeneracy of the corresponding modes j nf;ng;py;pzi. The fur-
ther the separation constants ðkðnf ;ng ;py ;pzÞðEÞ, lðnf ;ng ;py ;pzÞðEÞÞ in the whispering gallery types of motion lie
away from the border s2

1 ¼ c2 to bouncing ball motions, the higher the effective energy Em;eff lies above
the effective potential Vm;eff . In this limit, the role of the potential becomes negligible and the energy is
essentially determined by the total number of nodes of wm along a complete m-loop which is an ellipse
in Fig. 17. The relation (111) between the quantum numbers of the full system and the quantum num-
bers of the symmetry reduced system leads to the energetic degeneracy of the two pairs of modes

j nf þ 1;ng;þ;þi $ j nf;ng;�;�i; ð116Þ
j nf;ng;þ;�i $ j nf;ng;�;þi ð117Þ

In Fig. 15, this effect is seen for the pairs of modes j 1;0;þ;þi and j 0;0;�;�i, j 1;0;�;þi and
j 1;0;þ;�i, j 2;0;þ;þi and j 1;0;�;�i, j 2;0;þ;�i and j 2;0;�;þi, j 2;0;�;�i and j 3;0;þ;þi which,
on the energy axis, become more and more indistinguishable as energy increases, and this way effec-
tively lead to steps of size 2 (see also Fig. 16 and the plot of the wavefunctions in Fig. 17). There is no
analogous degeneracy for the bouncing ball type states, as can be deduced from the relation (110).

5.2.2. The classical transmission
In order to compute the directional flux through the four-dimensional dividing surface (67) of the

3D system we consider the symplectic 2-form

x ¼ dpx ^ dxþ dpy ^ dyþ dpz ^ dz; ð118Þ

from which we can define the 4-form

R. Hales, H. Waalkens / Annals of Physics 324 (2009) 1408–1451 1439



X0 ¼ 1
2
x2 ¼ dpx ^ dx ^ dpy ^ dyþ dpx ^ dx ^ dpz ^ dzþ dpy ^ dy ^ dpz ^ dz: ð119Þ

The directional flux through the dividing surface (67) is then obtained from integrating X0 over the
forward hemisphere DSf defined in (68), i.e.

f ðEÞ ¼
Z

DSf

X0: ð120Þ

Noting that

X0 ¼ d/; ð121Þ

0 1 2 3
0
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2
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{

{
{

{
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l

|5>
|18>
|2>
|19>
|13>

|3>
|1>

|21>
|20>
|16>
|15>

|11>
|12>

|7>
|8>

|4>

|9>
|14>
|22>

|6>
|10>
|17>

Fig. 16. The ðk; lÞ-spectra of the modes leading to the jumps of the cumulative reaction probability in Fig. 15 for
ða2; c2Þ ¼ ð5; 0:2Þ. For each shown mode j nf; ng;py;pzi (see the table in Fig. 15) the energy E is varied from 2 (for which
ðkðnf ;ng ;py ;pz ÞðEÞ; lðnf ;ng ;py ;pzÞðEÞÞ are in the reflective types of motion BB3 or WG3 beyond the right border of the shown region) to
E ¼ 100 for which ðkðnf ;ng ;py ;pz ÞðEÞ; lðnf ;ng ;py ;pzÞðEÞÞ are in one of the classically transmitting types of motion BB1, BB2, WG1 or WG2.
The bold lines mark the classical bifurcation diagram.

Fig. 17. Probability contours in the section x ¼ 0 of the wave functions of the modes j nf;ng; py;pzi at the moment when they
‘‘open” as transition channels (see text). The wave functions are displayed in the order they contribute to the cumulative
reaction probability in Fig. 15. Light blue corresponds to low probability, red corresponds to high probability. The black lines
mark the envelopes of the corresponding classical motion. Ellipses indicate whispering gallery modes; hyperbolas indicate
bouncing ball modes. (For interpretation of color mentioned in this figure legend the reader is referred to the web version of the
article.)
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where / is the 3-form

/ ¼ 1
2
ðpxdxþ pydyþ pzdzÞ ^x ð122Þ

we can again use Stokes’ theorem to compute the flux from the integral over the boundary of DSf

which is the transition state TS consisting of the invariant billiard in the bottleneck ellipse at energy
E. Hence,

f ðEÞ ¼
Z

TS
/: ð123Þ

Using either (120) or (123), we get

f ðEÞ ¼ 2mp2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

E; ð124Þ

which is the product of the area, A ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

, of the bottleneck ellipse and the area of the circular
disk of radius

ffiffiffiffiffiffiffiffiffiffi
2mE
p

in the two-dimensional momentum space ðpy; pzÞ 2 R2.
In order to relate the flux to the cumulative reaction probability, we introduce the dimensionless

quantity

NWeylðEÞ ¼
1

ð2p�hÞ2
f ðEÞ ¼ A

4p
2mE

�h2 : ð125Þ

Comparing the graphs of NWeylðEÞ and NðEÞ in Fig. 15, we see that NWeylðEÞ overestimates the local aver-
age of NðEÞ. This is an indication that quantum effects are quite severe in this system. Using the fact
that, neglecting quantum mechanical tunneling through the dynamic barrier, NðEÞ is essentially the
number of states of the billiard in the bottleneck ellipse to energy E we can introduce correction terms
to NWeylðEÞ of which the first is proportional to

ffiffiffi
E
p

and depends on the length, L, of the perimeter of the
boundary ellipse and the second is a constant term resulting from integrating the Gauss curvature
along the perimeter of the bottleneck ellipse [41]. This way we get

eNWeylðEÞ ¼
A

ð2p�hÞ2
2mE

�h2 �
L

4p

ffiffiffiffiffiffiffiffiffiffi
2mE
p

�h
þ 1

6
; ð126Þ

where L ¼ 4EðcÞwith EðcÞ denoting Legendre’s complete elliptic integral of the second kind with mod-
ulus c. The graph of eNWeylðEÞ is also shown in Fig. 15 and in fact gives a very good local average of NðEÞ.

6. Quantum resonances

In Section 4, we have seen that the classical systems possess invariant subsystems of one degree of
freedom less than the full system contained in the respective phase space bottlenecks. These systems
which form the transition states were given by a one-dimensional billiard in a square well in the 2D
case and the invariant elliptic billiard in the 3D case. The Heisenberg uncertainty relation rules out the
existence of analogous invariant subsystems in the corresponding quantum mechanical problems. In
fact, a wavepacket initialised on such an invariant subsystem will decay exponentially fast in time.
This exponential decay is described by the resonances [8].

The resonances can be formally defined as the poles of the meromorphic continuation of the trans-
mission probabilities to the lower half of the complex energy plane. A semiclassical approximation of
the resonances can thus be obtained from the poles of the expressions of the transmission probabil-
ities we have given in (89) (for the 2D case) and (103) (for the 3D case). This leads to the complex EBK
type quantization condition for the tunnel integrals h defined in (90) or (104) given by

h ¼ ip�hð2nk þ 1Þ; nk 2 N0; ð127Þ

or equivalently

In ¼ �i�hðnk þ
1
2
Þ; nk 2 N0; ð128Þ
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(see Equations (91) and (105)). In the following, we study this semiclassical approach to the compu-
tation of resonances and compare it with a numerical computation of the exact resonances based on
the complex scaling method.

6.1. The 2D system

6.1.1. Semiclassical computation of resonances
We at first compute the resonances semiclassically. To this end, we have to simultaneously solve

the (standard) EBK quantization condition (93), i.e.

eIf ¼ �h nf þ
1
4
ð3� pyÞ

� �
; nf 2 N0; ð129Þ

in combination with the complex EBK quantization condition (128) which rewritten in terms of the
action eIn of the symmetry reduced system defined in (57) gives

eIn ¼ �i�h nn þ
1
4
ð2� pxÞ

� �
; nn 2 N0: ð130Þ

As we will see below, when discussing the numerically exact resonances, this quantization condition
decomposes the resonance states with respect to their parity px. Note that, similar to the semiclassical
computation of the cumulative reaction probability in Section 5.1.1, we assume that the type of mo-
tion T1 also plays no role for the computation of the resonances. Otherwise (129) would have to be
replaced by a uniform quantization condition which interpolates between T1 and T2, i.e. across
s2

2 ¼ 1 (see Section 4.1). This assumption is justified by the fact that the resonances are associated with
the activated complex consisting of the classically invariant billiard in the one-dimensional square
well potential which has s2

2 ¼ a2, and the resonances can be expected to have values s2
2 near a2 and

hence stay away from s2
2 ¼ 1. We will see that this assumption is indeed fulfilled.

The solutions E and s2
2 of the quantization conditions (129) and (130) are complex valued. The inte-

gration paths cf and cn defining If and In in (55) and (56) therefore have to be continued accordingly
into the complex plane (see Fig. 9)(c). They can be found numerically using a standard Newton pro-
cedure. To this end, one has to decompose (129) and (130) with respect to their real and imaginary
parts which leads to a four-dimensional Newton procedure. We note that this procedure is less robust
than in the real case in Section 5.1.1. In particular, the procedure struggles when the energies E are
close to the imaginary axis. For fixed quantum number nf and parity py, we find the resonances by
starting near to, but not at, the corresponding ‘‘opening” tick on the real energy axis of Fig. 14 and
by smoothly moving the parameter s2

2 into the complex plane. We then go through the grid
ðnn;pxÞ 2 N0 � f�1;1g. We give a list of the resulting complex energies E and separation constants
s2

2 in Table 2.

6.1.2. Exact computation of resonances
We compute the (numerically) exact resonances from the complex scaling method [42,43]. The

main idea here is to turn the wavefunctions which are associated with the resonances and exponen-
tially divergent when the reaction coordinate goes to infinity into square integrable functions by a
complex scaling of the reaction coordinate. In our case, the reaction coordinate is given by n or equiv-
alently k. In order to apply the complex scaling method, we at first transform the k component of the
separated Helmholtz equation (see (17))

� �h2

2m
d2wk

dk2 ¼ E cosh k2 � s2
2

� �
wk: ð131Þ

The goal of the transformation is to get a wave equation which no longer involves an exponentially
decreasing potential which would cause problems in the complex scaling method. This can be
achieved by rewriting (131) in terms of

rðkÞ ¼ a sinh k ð132Þ
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and the scaled wavefunction wr defined by

wkðkÞ ¼
wrðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr=dk

p ¼ wrðrÞ
ðr2 þ a2Þ1=4 : ð133Þ

This gives

� �h2

2m
d2wr

dr2 ¼ Er;eff � Vr;eff
� �

wr; ð134Þ

with the effective energy and potential given by

Er;effðrÞ ¼ E; ð135Þ

Vr;effðrÞ ¼
Es2

2 þ �h2

4m

r2 þ a2 �
�h2

2m
3r2

4ðr2 þ a2Þ2
; ð136Þ

respectively. As opposed to the effective potential in (131), the potential Vr;eff goes to zero as j r j! 1,
and accordingly, for real E and s2

2, the wave function wr is a plane wave as r!1. In fact, in terms of
the original Cartesian coordinates ðx; yÞ the solutions have to become plane waves for j x j! 1. From
(8) and noting that n ¼ a coshðkÞ, we see that r ¼ a sinhðkÞ is proportional to x and this is the motiva-
tion for the transformation (132). The scaling of the wavefunction (133) is performed in order to again
obtain a system of type ‘‘kinetic-plus-potential”.

In order to compute the resonances, we substitute r in (134) with reia. Upon this scaling the out-
going plane waves become asymptotically decreasing as r!1 provided that a > � argðEÞ.

We implement the complex scaling method numerically using a shooting method. To this end, we
choose a suitably large but finite value r1 at which we require the scaled wave function wr to vanish.
The other boundary condition on wr is given by wrð0Þ ¼ 0, w0rð0Þ ¼ 1 if px ¼ �, and wrð0Þ ¼ 1,
w0rð0Þ ¼ 0 if px ¼ þ. The boundary conditions for wf are the same as for the scattering states in Section
5.1.1. In order to implement the complex scaling method, we decompose the two equations into their
real and imaginary parts. This then leads to a (real) four-dimensional Newton procedure on the com-
plex two-dimensional E� s2

2 plane. As the starting values we use the semiclassical values for the res-
onances obtained as described above in Section 6.1.1. We note that the complex scaling method is
quite sensitive with respect to the choice of r1 and the scaling angle a. Like in the semiclassical com-
putation this is particularly true for values of the energy near the imaginary axis. For the scaling used
in these systems a ‘‘suitable” value for r1 ranges from 
 1 for resonances with ReðEÞ 
 500 to 
 5 for
resonances with ReðEÞ 
 3. An inappropriate value leads to apparent but false convergence. In Table 2,
the exact resonances computed this way are compared to the corresponding semiclassical values. The
relative error reaches its maximum value of about 5% at the first state j 0;0;þ;þi. The relative error
shrinks rapidly for larger real parts of the resonance energies.

Table 2
The exact resonances ðEqm; s2

2;qmÞ and the semiclassical resonances ðEsc ; s2
2;scÞ of the 2D system for ReE < 50 and fnn ;pxg ¼ f0;�g

(the first two families of resonances). The relative error DE ¼ ð Escj j � Eqm

�� ��Þ= Eqm

�� �� is given in percent. (�h ¼ 1;m ¼ 1).

nf nn py px Eqm s2
2;qm Esc s2

2;sc DE

0 0 + + 1:1525� i0:3548 4:6850þ i1:4005 1:1891� i0:3760 4:7356þ i1:3858 3.42
0 0 + � 0:8269� i1:0267 2:8677þ i3:3911 0:8295� i1:0807 2:9113þ i3:3371 3.35
0 0 � + 4:8468� i0:7422 4:9205þ i0:7090 4:8902� i0:7549 4:9331þ i0:7070 0.91
0 0 � � 4:5011� i2:2053 4:4057þ i2:0161 4:5330� i2:2413 4:4171þ i2:0098 0.89
1 0 + + 11:0135� i1:1243 4:9646þ i0:4737 11:0587� i1:1332 4:9702þ i0:4731 0.41
1 0 + � 10:6624� i3:3580 4:7303þ i1:3877 10:7019� i3:3839 4:7356þ i1:3858 0.41
1 0 � + 19:6487� i1:5045 4:9801þ i0:3555 19:6946� i1:5113 4:9832þ i0:3553 0.23
1 0 � � 19:2954� i4:5021 4:8472þ i1:0525 19:3379� i4:5222 4:8502þ i1:0517 0.23
2 0 + + 30:7517� i1:8838 4:9872þ i0:2845 30:7979� i1:8893 4:9893þ i0:2844 0.15
2 0 + � 30:3972� i5:6423 4:9018þ i0:8463 30:4413� i5:6586 4:9038þ i0:8459 0.15
2 0 � + 44:3222� i2:2627 4:9911þ i0:2372 44:3686� i2:2673 4:9925þ i0:2371 0.11
2 0 � � 43:9671� i6:7805 4:9317þ i0:7072 44:0120� i6:7942 4:9331þ i0:7070 0.1
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As shown in Fig. 14, the resonance energies (resp. the corresponding wavenumbers) form a grid in
the complex energy (resp. wavenumber) plane. The grid sites can be labeled by the quantum numbers
nf and nn and the parities px and py. As also shown in Fig. 14, each step of the cumulative reaction
probability is associated with one ‘‘string” of resonances of fixed nf and py. We note that interestingly
the values of s2

2 are located along a smooth line in the complex s2
2 plane. This can be understood semi-

classically from taking the quotient of the EBK quantized actions In and If whose integrals both scale
with

ffiffiffi
E
p

, and hence leads to the energy independent condition

�
nn þ 1

4 ð2� pxÞ
nf þ 1

4 ð3� pyÞ
¼
R
cn
ðz� s2

2Þ dz
wR

cf
ðz� s2

2Þ dz
w

ð137Þ

on s2
2.

In Fig. 18, we present the separated wavefunctions wm and wr for a selection of resonances. We see
that the scaled wavefunction obey the boundary conditions determined by the parities px and py and
the exponential decay as r!1, and also have the expected number of nodes determined by the
quantum numbers nf and nn.

For a selection of resonances, the total density of position given by

j wðm; kÞj2 ¼j wmðmÞwkðkÞj
2 ð138Þ

is shown in Fig. 19. Note that there are no nodal lines other than the coordinate axes for states with
negative parities. This is due to the complex valuedness of the energy E and the separation constant s2

2

for these states. In particular, sections of these plots along the bottleneck x ¼ 0 (which would give the
2D analog of Fig. 21 in the 3D case) would lead to densities that are greater than zero at every
y 2 ð�1;1Þ apart from a possible zero at y ¼ 0 if py ¼ �.

6.2. The 3D system

6.2.1. Semiclassical computation of resonances
In the 3D case, we combine the complex EBK quantization condition (128) which we write in terms

of the symmetry reduced action eIn analogously to (130) with the uniform quantization conditions
(112). The resulting set of equations
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Fig. 18. Real parts of the separated resonance wavefunctions (solid lines) of the four states j nf;nn ;py;pxi with nf ¼ 2,
nn 2 f0;1g, py ¼ �, and px ¼ �. For fixed fnf;pyg (and hence fixed nm), and different nn and px , the wavefunctions wm are
qualitatively the same (upper left panel). For increasing nk , the four right hand panels show the increase in the number of nodes
of the separated wavefunction in the reaction coordinate r. The dashed lines are the real parts of the corresponding effective
potentials Vŝ;eff ðŝÞ, ŝ 2 fm; kg. We add the real parts of the effective energies Eŝ;eff (dotted lines) to the amplitude of the
wavefunctions to visualize their energies relative the height of the potential barrier. The bottom left panel is the real part of a
sample effective potentials Vr;eff over a larger r interval.
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eIf ¼ nf þ
af

4

� �
�h; eIg ¼ ng þ

ag

4

� �
�h; eIn ¼ �i nn þ

1
4
ð2� pxÞ

� �
�h; ð139Þ

where nf;ng;nn 2 N0, and am and al are defined in (113) and (114), can again be solved by a Newton
procedure on the (real) six-dimensional space of complex s2

1, s2
2 and E. To this end the integration paths

defining the integrals that enter the quantization conditions (139) have to be continued into the com-
plex plane as shown in Fig. 13(d,e). We label the resulting resonance modes by the Dirac kets
j nf;ng;nn;py;pz;pxi. For fixed quantum numbers nf;ng and parities py;pz, we find the resonances
by starting near to, but not at, the corresponding ‘‘opening” tick on the real energy axis of Fig. 15
and by smoothly moving the parameter s2

2 into the complex plane. We then go through the grid
ðnn;pxÞ 2 N0 � f�1;1g. As with the 2D case, special care has to be taken of resonances which have
energies close to the imaginary axis. We give a list of semiclassically computed resonances in Table 3.

6.2.2. Exact computation of resonances
For the computation of the exact quantum resonances using the complex scaling method, we again

transform the k component of the separated wave equation (see (35))

� �h2

2m
d2wk

dk2 ¼
E
a2 n4ðkÞ � 2kn2ðkÞ þ l
� �

wk: ð140Þ

We are now looking for a transformation of k and wk analogous to (132) and (133) in the 2D case which
yields a system of type ‘‘kinetic-plus-potential” with the potential going to zero at infinity. In the 3D
case, this can be achieved by setting

rðkÞ ¼ aq0tnðk; qÞ ¼ aq0
snðk; qÞ
cnðk; qÞ ð141Þ

and

wkðkÞ ¼
wrðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr=dk

p ¼
ffiffiffiffi
a
q0

r
wrðrÞ

ðr2 þ a2Þðq02r2 þ a2Þð Þ1=4 ; ð142Þ

where the modulus of the elliptic functions is again given by q ¼ c=a and q0 ¼ ð1� q2Þ1=2. This leads to
the new wave equation

Fig. 19. Two-dimensional contourplots of the densities of position in the x–y plane for all the resonance wavefunctions (138) of
the 2D system, with a2 ¼ 5, for all the resonance states shown in Fig. 14. Light blue corresponds to low probability, red
corresponds to high probability.
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Table 3
The quantum mechanical complex eigenvalues fEqm; kqm; lqmg and the semiclassical complex eigenvalues fEsc ; ksc; lscg of the 3D asymmetric hyperboloidal billiard for the ranges ReðEÞ < 20 and
500 < ReðEÞ < 520 and for fnn ;pxg ¼ f0;�g (the first two families of resonances). The relative error DE ¼ ð Eqm

�� ��� Escj jÞ= Eqm

�� �� is given in percent. (�h ¼ 1;m ¼ 1).

nf ng nn py pz px Eqm kqm lqm Esc ksc lsc DE

0 0 0 + + + 3:1688� i0:5835 2:4498þ i0:4141 0:4408þ i0:0771 2:9886� i0:5942 2:5052þ i0:4454 0:5802þ i0:1081 5.4
0 0 0 + + � 2:8348� i1:7219 2:0997þ i1:1533 0:3756þ i0:2147 2:6279� i1:7526 2:0976þ i1:2224 0:4814þ i0:2966 4.8
0 0 0 � + + 7:7066� i0:9376 2:5633þ i0:2801 1:0338þ i0:1196 7:5633� i0:9414 2:5844þ i0:2860 1:0528þ i0:1237 1.8
0 0 0 � + � 7:3521� i2:7939 2:4011þ i0:8131 0:9646þ i0:3473 7:2031� i2:8049 2:4139þ i0:8284 0:9790þ i0:3584 1.7
0 0 0 + � + 8:6233� i0:9976 2:5145þ i0:2627 0:5052þ i0:0566 8:4030� i0:9971 2:5386þ i0:2689 0:5767þ i0:0661 2.5
0 0 0 + � � 8:2655� i2:9751 2:3693þ i0:7649 0:4739þ i0:1647 8:0398� i2:9732 2:3853þ i0:7815 0:5391þ i0:1921 2.4
1 0 0 + + + 14:2036� i1:2881 2:6094þ i0:2104 1:3141þ i0:1140 14:0702� i1:2859 2:6202þ i0:2116 1:3142þ i0:1147 0.93
1 0 0 + + � 13:8402� i3:8499 2:5176þ i0:6197 1:2643þ i0:3359 13:7074� i3:8435 2:5266þ i0:6231 1:2634þ i0:3376 0.90
0 0 0 � � + 14:7294� i1:3158 2:5926þ i0:2060 1:1386þ i0:0981 14:6744� i1:3161 2:6009þ i0:2065 1:1176þ i0:0963 0.37
0 0 0 � � � 14:3639� i3:9332 2:5040þ i0:6072 1:0964þ i0:2892 14:3106� i3:9344 2:5112þ i0:6083 1:0757þ i0:2837 0.34
0 1 0 + + + 17:5729� i1:4364 2:5143þ i0:1856 0:3219þ i0:0250 17:3973� i1:4300 2:5255þ i0:1865 0:3476þ i0:0270 1.0
0 1 0 + + � 17:2100� i4:2966 2:4407þ i0:5486 0:3120þ i0:0738 17:0367� i4:2775 2:4507þ i0:5510 0:3368þ i0:0799 0.97
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

7 3 0 + + + 514:6176� i7:8748 2:6479þ i0:0357 1:4856þ i0:0219 514:4407� i7:7908 2:6483þ i0:0353 1:4858þ i0:0217 0.04
7 3 0 + + � 514:2416� i23:6217 2:6453þ i0:1069 1:4840þ i0:0656 514:0764� i23:3700 2:6457þ i0:1058 1:4842þ i0:0650 0.03
6 3 0 � � + 514:6179� i7:8748 2:6479þ i0:0357 1:4856þ i0:0219 514:4407� i7:7908 2:6483þ i0:0353 1:4858þ i0:0217 0.04
6 3 0 � � � 514:2419� i23:6217 2:6453þ i0:1069 1:4840þ i0:0656 514:0764� i23:3701 2:6457þ i0:1058 1:4842þ i0:0650 0.04
8 2 0 � + + 514:8034� i7:9062 2:6919þ i0:0360 1:9256þ i0:0287 514:5142� i7:8196 2:6923þ i0:0356 1:9263þ i0:0284 0.06
8 2 0 � + � 514:4227� i23:7160 2:6893þ i0:1080 1:9234þ i0:0859 514:1450� i23:4562 2:6897þ i0:1069 1:9242þ i0:0851 0.06
8 2 0 + � + 514:8034� i7:9062 2:6919þ i0:0360 1:9256þ i0:0287 514:5142� i7:8196 2:6923þ i0:0356 1:9263þ i0:0284 0.06
8 2 0 + � � 514:4227� i23:7160 2:6893þ i0:1080 1:9234þ i0:0859 514:1450� i23:4562 2:6897þ i0:1069 1:9242þ i0:0851 0.06
2 7 0 + + + 515:1296� i7:8539 2:5566þ i0:0349 0:5719þ i0:0083 514:9221� i7:7729 2:5570þ i0:0346 0:5730þ i0:0082 0.04
2 7 0 + + � 514:7588� i23:5592 2:5540þ i0:1047 0:5713þ i0:0249 514:5623� i23:3165 2:5544þ i0:1036 0:5723þ i0:0246 0.04
4 5 0 � + + 518:0938� i7:8509 2:5998þ i0:0351 1:0038þ i0:0143 518:0400� i7:7650 2:6000þ i0:0348 1:0033þ i0:0141 0.01
4 5 0 � + � 517:7245� i23:5502 2:5972þ i0:1053 1:0028þ i0:0429 517:6817� i23:2929 2:5974þ i0:1042 1:0022þ i0:0423 0.03
0 8 0 + � + 519:5687� i7:8903 2:5062þ i0:0344 0:0680þ i0:0010 519:4248� i7:8110 2:5066þ i0:0340 0:0688þ i0:0010 0.01
0 8 0 + � � 519:1991� i23:6686 2:5036þ i0:1031 0:0680þ i0:0030 519:0642� i23:4308 2:5040þ i0:1021 0:0687þ i0:0030 0.03
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� �h2

2m
d2wr

dr2 ¼ Er;eff � Vr;eff
� �

wr; ð143Þ

with the effective energy and potential given by

Er;eff ¼E;

Vr;effðrÞ ¼
E½ð2k� a2q2Þðq02r2 þ a2Þ � l�=q02 þ �h2ð6q02r2 þ a2 þ q02Þ=4m

ðr2 þ a2Þðq02r2 þ a2Þ ð144Þ

� �h2

2m
3ð2q02r3 þ ða2 þ q02ÞrÞ2

4ðr2 þ a2Þ2ðq02r2 þ a2Þ2
;

respectively.
As opposed to the effective potential in (140), the potential Vr;eff goes to zero as j r j! 1, and

accordingly, for real E, s2
1 and s2

2, the wave function wr is a plane wave as r!1. In fact, in terms
of the original Cartesian coordinates ðx; y; zÞ the solutions have to become plane waves for j x j! 1.
From (20) and noting that n ¼ adnðk; qÞ=cnðk; qÞwe see that r ¼ aq0tnðk; qÞ is proportional to x and this
is the motivation for the transformation (141). The scaling of the wavefunction (142) is performed in
order to again obtain a system of type ‘‘kinetic-plus-potential”.

Similarly to the 2D case, to compute the resonances we substitute r in (143) with reia. We have to
solve the f and g components of the wave equation and the corresponding boundary conditions de-
scribed in Section 5.2.1 in combination with the equation for wr in (143) with the boundary conditions
at zero determined by the parity px and wrðrÞ ! 0 as j r j! 1 (see the analogous conditions for the
2D case in Section 6.1.2). In our numerical procedure, which consists of a shooting method like in the
2D case, we again choose a sufficiently large r1 at which we require wrðr1Þ ¼ 0. Decomposing all
equations with respect to their real and imaginary parts the shooting method results in a (real) six-
dimensional Newton procedure acting on the complex three-dimensional plane E� s2

1 � s2
2 (or equiv-

alently E� k� l). Using the semiclassical values from the previous section as the starting values the
shooting method always converges to the expected resonance state. Like in the 2D case, special care
has to be taken of those resonance states of energy close the imaginary axis. In Table 3, the exact res-
onances are compared to the semiclassically computed resonances. The relative error of the semiclas-
sical complex energy eigenvalues reaches its maximum value of about 5% for the first state
j 0;0;0;þ;þ;þi. The relative error shrinks rapidly for larger resonance energies. Plotting the reso-
nances in the complex energy (resp. wavenumber) plane in Fig. 15, we see that each string of reso-
nances of fixed quantum numbers nf and ng, and parities py and pz give rise to one step of the
cumulative reaction probability. Since we have three quantum numbers for the 3D system (as opposed
to the two quantum numbers in the 2D system) the resonances can be viewed to form the superpo-
sition of an infinite number of grids of the more regular type of grid found in the 2D system in Fig. 14.

From studying the separated transverse wavefunctions wm and wl, one can see that their real and
imaginary parts are similar, but not equal. Also for increasing quantum number nk, these wavefunc-
tions vary little (see Fig. 20.) However, the real and imaginary parts of wm and wl have their zeros
at slightly different values of the respective coordinates m and l. Due to the complex valuedness of
s2

1 and s2
2 the total wavefunctions do not have any nodal surfaces apart from the ones along the sym-

metry planes if the corresponding parity is negative. This can also be seen in Fig. 21, where we present
the contours of the resonance wavefunctions as their intersections with the y–z plane (ignoring the
component wk of the total wave function which would lead to zero valued total wavefunctions when
px ¼ �). Note that these contours look quite different from the analogous contours for the scattering
states in Fig. 17. In addition to the absence of nodal lines, there is also (as to be expected) no clear dis-
tinction between whispering gallery and bouncing ball modes.

The total probability density is given by

j wðm;l; kÞj2 ¼j wmðmÞwlðlÞwkðkÞj
2
: ð145Þ

In order to compute the separated wavefunction wkðkÞ, we use again the transformation (142) and the
inverse of (141) which is given by the elliptic integral
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kðrÞ ¼ tn�1ðr=aq0; qÞ ¼
Z r

0

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ x2Þða2q02 þ x2Þ

p dx: ð146Þ

In Fig. 22, we show the isosurfaces of (145) inside the hyperboloidal boundary for two examples of
resonance states which further illustrates the absence of nodal surfaces (in addition to the Cartesian
coordinate planes for negative parities).

7. Conclusions and outlook

In this paper, we demonstrated how ideas from transition state theory can be used to compute the
classical and quantum mechanical transmission probabilities for transport through entropic barriers.
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Fig. 20. Real parts of the separated resonance wavefunctions (solid lines) of the eight states
j nf;ng; nn; py;pz;pxi ¼j 0;2; f0;1g;þ;�;�i (classically BB, upper panels) and j nf;ng; nn; py;pz ;pxi ¼j 4;0; f0;1g;þ;þ;�i (clas-
sically WG, lower panels). For fixed fnf; ng;py;pzg (and hence fixed fnm;nlg), wm and wl are the same (far left panels) whilst for
increasing nk the center panels show the increase in nodes of the separated wavefunction in the reaction coordinate r. The
dashed lines are the real parts of the corresponding effective potentials Vŝ;eff ðŝÞ. The wavefunctions are plotted at the real part of
the effective energies Eŝ;eff (dotted lines). The two far right panels are the real parts of two sample effective potentials Vr;eff

viewed at long range.
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For barriers associated with saddle points of the potential (and more generally saddle type equilibria
of the Hamilton function), it has recently be shown that the transport through the phase space bottle-
necks induced by such saddle points are controlled by a set of phase space structures. In the present
paper, we identified the analogous phase space structures for potentialless barriers where the phase
space bottlenecks are induced by hard wall constrictions. We focused on the special case of hyperbo-
loidal constrictions in two and three dimensions for which the classical and quantum transmission
problems are separable, and hence facilitate a very detailed, and to a large extent also analytical, study.
For these systems, we showed that like in the case of smooth systems one can construct a dividing
surface which has the property that it is crossed exactly once by reactive trajectories, and not crossed
at all by non-reactive trajectories. This, like in the smooth case, leads to a rigorous realization of Wig-
ner’s transition state theory, i.e. to an exact computation of the classical transmission probability from
the (directional) flux through the dividing surface. Similarly, the quantum cumulative reaction prob-

Fig. 21. Probability contours in the section x ¼ 0 of the wave functions of the resonance modes j nf;ng; nn; py;pz;pxi. These
correspond to the first three families of resonances associated with the steps labeled j 7i to j 13i in Fig. 15. For px ¼ �, the
ellipses shown here are actually nodal surfaces of the total wavefunction. The separated wavefunction wn is therefore ignored
for the purposes of this figure. Light blue corresponds to low probability, red corresponds to high probability. Only axis lines (i.e.
the symmetry lines) are nodal.

Fig. 22. Three-dimensional contourplots of the probability densities of the wavefunctions of the 3D system, with parameters
c2 ¼ 0:2 and a2 ¼ 5, for the two resonance states j nf; ng;nn;py;pz;pxi ¼j 0; 0;0;þ;þ;þi (left) and
j nf; ng;nn ;py;pz ;pxi ¼j 1;1; 0;þ;þ;�i (right). The isosurfaces are j wðm;l; kÞj2 ¼ 0:1 (cyan), j wðm;l; kÞj2 ¼ 0:3 (green),
j wðm;l; kÞj2 ¼ 0:5 (red) and j wðm;l; kÞj2 ¼ 0:9 (blue). Note that there are no nodal surfaces apart from the y–z plane due to a
negative parity px for the second state.
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ability can be computed exactly from the quantum mechanical flux through the dividing surface. We
showed that like in the case of smooth systems the dividing surface is linked to an unstable invariant
subsystem with one degree of freedom less than the full system. In the context of chemical reactions
such an invariant subsystem located between reactants and products is referred to as the transition
state or the activated complex. For the 2D and 3D systems studied in this paper, the transition states
consist of the billiard in a one-dimensional square well and the billiard in an ellipse, respectively. Like
in the smooth case, the transition states in the hard wall constrictions have stable and unstable man-
ifolds which have sufficient dimensionality to form separatrices which separate reactive trajectories
from non-reactive trajectories and thus play a key role for the classical transmission problems.

Quantum mechanically, the transition states manifest themselves on the one hand through a
‘‘quantization” of the cumulative reaction probability and quantum resonances. The quantization of
the cumulative reaction probability refers to the stepwise increase of the cumulative reaction proba-
bility as a function of energy each time a new state fits into the respective transition state. In fact, as
discussed in some detail, the cumulative reaction probability is approximately given by the integrated
density of states of the invariant subsystems associated with the transition states. For the quantum
systems, the Heisenberg uncertainty relation excludes the existence of invariant subsystems analo-
gous to the classical case. Instead, a wavepacket initialized on the classically invariant subsystems will
decay (exponentially fast) in time with the lifetimes being described by the resonances. We computed
such resonances semiclassically from the poles of a meromorphic continuation of the semiclassical
expression for the transmission probability to the lower half of the complex energy plane. We showed
that this leads to a very good agreement with the results obtained from the numerical computation of
the exact resonances from the complex scaling method. The separability of the systems yields an
assignment of the resonances by quantum numbers. We showed that each string of resonances corre-
sponding to fixed quantum numbers associated with the transverse degrees of freedoms gives rise to a
step of unit size of the cumulative reaction probability. Despite of their separability, the systems stud-
ied in this paper display quite a rich variety of dynamics. In particular, the transition state of the 3D
system involves two different types of modes that we referred to as whispering gallery and bouncing
ball modes. We showed that the energetic quasidegeneracy of the whispering gallery modes leads to
steps in the cumulative reaction probability of effective stepsize 2. Similarly, the corresponding reso-
nances are quasidegenerate with respect to their complex energies.

For many aspects of our study, we heavily used the separability of the systems. We in particular
presented a detailed study of the analytic nature of the integrals which enter the EBK and uniform
semiclassical quantization schemes as action and tunnel integrals. We showed that all these integrals
can be interpreted as Abelian integrals on an elliptic (2D system) or hyperelliptic (3D system) curve
with branch points determined by the separation constants and the geometry parameters of the
hyperboloidal constrictions. This interpretation led to a natural extension of the semiclassical quanti-
zation conditions of scattering states to quantization conditions for resonances states by complexify-
ing the separation constants and integration paths.

Though the systems discussed in this paper are special due their separability many of the phase
space structures found are expected to exist in systems with more general constrictions that lead to
non-separable dynamics. In particular, it is to be expected that the phase space structures associated
with the transition states persist under (small) deformations of the hyperboloidal constrictions which
(generically) would destroy the integrability of the systems. For smooth systems, this has been studied
already in quite great detail. The phase space structures for such systems can, e.g., be practically deter-
mined from a normal form expansion about the saddle equilibrium points [4,8]. For systems where the
barriers are induced by hard wall constrictions, the determination of the phase space structures asso-
ciated with the transition state is more challenging in the generic non-separable case. The best ap-
proach here seems to be the study of these structures in terms of a billiard map, i.e. a map
resulting from taking snapshots of the billiard dynamics from one specular reflection to the next.
For a 2D system, the resulting map is a symplectic map from R2 to R2, with the periodic orbit that
forms the transition state in this case appearing as a hyperbolic fixed point of the map. There are well
established methods for determining the fixed point and also (using methods based again on a normal
form) for computing the stable and unstable manifolds of the fixed point. However, the situation is
much more involved in the 3D case, where the resulting billiard map is a symplectic map from R4
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to R4. The transition state then forms a two-dimensional manifold in the domain and image of this
map. Its stable and unstable manifolds are three-dimensional. Computing these manifolds in practice
is quite difficult. This gives an interesting field for future studies.
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