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Abstract

Background: With advances in next generation sequencing technologies and genomic capture techniques,
exome sequencing has become a cost-effective approach for mutation detection in genetic diseases. However,
computational prediction of copy number variants (CNVs) from exome sequence data is a challenging task. Whilst
numerous programs are available, they have different sensitivities, and have low sensitivity to detect smaller CNVs
(1–4 exons). Additionally, exonic CNV discovery using standard aCGH has limitations due to the low probe density
over exonic regions. The goal of our study was to develop a protocol to detect exonic CNVs (including shorter CNVs
that cover 1–4 exons), combining computational prediction algorithms and a high-resolution custom CGH array.

Results: We used six published CNV prediction programs (ExomeCNV, CONTRA, ExomeCopy, ExomeDepth,
CoNIFER, XHMM) and an in-house modification to ExomeCopy and ExomeDepth (ExCopyDepth) for computational
CNV prediction on 30 exomes from the 1000 genomes project and 9 exomes from primary immunodeficiency
patients. CNV predictions were tested using a custom CGH array designed to capture all exons (exaCGH). After this
validation, we next evaluated the computational prediction of shorter CNVs. ExomeCopy and the in-house modified
algorithm, ExCopyDepth, showed the highest capability in detecting shorter CNVs. Finally, the performance of each
computational program was assessed by calculating the sensitivity and false positive rate.

Conclusions: In this paper, we assessed the ability of 6 computational programs to predict CNVs, focussing on
short (1–4 exon) CNVs. We also tested these predictions using a custom array targeting exons. Based on these
results, we propose a protocol to identify and confirm shorter exonic CNVs combining computational prediction
algorithms and custom aCGH experiments.
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Background
With advances in next generation sequencing technolo-
gies and genomic capture techniques, exome sequencing
has become a cost-effective approach for mutation de-
tection in genetic diseases [1]. The availability of efficient
and robust analysis tools such as Genome Analysis Toolkit
(GATK) makes it possible to discover SNPs and indels
using sequence data with high sensitivity and specificity
[2]. Even though CNV Copy Number Variant discovery in
whole-genome sequence data is performed with high ac-
curacy [3], a number of different algorithms with variable
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specificities are available to detect CNVs in exome data [4].
Thus, selecting the correct algorithm or algorithm combin-
ation has become a bottleneck of exome CNV prediction.
Moreover, CNV detection algorithms have low specificity
and sensitivity in predicting small CNVs (1 to 4 exons) [5].
While computational approaches have limitations in

predicting CNVs in exome sequence data, standard array
comparative genomic hybridization (aCGH) used for
genome-wide high-resolution CNV detection also show
restrictions in exonic CNV detection due to the low probe
coverage over exonic regions. Thus, the detection of ex-
onic CNVs using both computational and aCGH based
methods remains a challenging task.
The goal of our study was to develop a protocol to detect

exonic CNVs (including CNVs that cover 1 to 4 exons)
from exome sequencing data by combining computational
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Table 1 Exome CNV prediction programs used in the
study

Program Reference

ExomeCNV https://secure.genome.ucla.edu/index.php/ExomeCNV_
User_Guide [11]

CONTRA http://sourceforge.net/apps/mediawiki/contra-cnv/index.
php?title=Main_Page [12]

ExomeCopy http://www.bioconductor.org/packages/2.9/bioc/html/
exomeCopy.html [13]

ExomeDepth http://cran.r-project.org/web/packages/ExomeDepth/
index.html [14]

CoNIFER http://conifer.sourceforge.net/index.html [5]

XHMM http://atgu.mgh.harvard.edu/xhmm/index.shtml [15]
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prediction algorithms and a high-resolution custom CGH
array. In this study, we predicted CNVs in 30 exomes ob-
tained from the 1000 genomes project [6] using six re-
cently published CNV detection programs along with an
in-house modified algorithm. Computational CNV predic-
tions were then tested using a custom CGH array focused
on exonic regions. Next, true CNVs were identified by
comparing computational predictions with the results of
the CGH array. With the experimental validation of the
computational predictions, the sensitivity and false positive
rate of each program, or program combination, was deter-
mined. Results of the computational prediction demon-
strated a wide range in both CNV count and size. Finally,
we studied the clinical utility of the algorithms used in our
study by computational prediction and array confirmation
of CNVs in 9 exomes from primary immunodeficiency
patients.

Methods
Data sets
Alignment data (BAM files) required for computational
CNV prediction were obtained from the public data re-
pository of the 1000 genomes exome project which tar-
gets the CCDS gene set in 2500 individuals [7]. All of
the individuals are from the CEU population. DNA sam-
ples of the same exomes used in computational CNV
predictions were obtained from the Coriell Institute for
Medical Research [8].

Exome sequencing
Exome capture was performed on primary immunodefi-
ciency patient DNA using the Agilent SureSelect Human
All Exome capture kit v.5 (Agilent Technologies), and
captured libraries were sequenced on an Illumina HiSeq
2000. Sequence alignment was performed with Novolign
(V2.07.17) [9]. Next, using GATK (V2.4-9) [2], the initial
BAM files were realigned and the base quality scores
were recalibrated. After marking the duplicates with Pic-
ard (V1.74) [10], the final set of alignment data (BAM
files) required for computational CNV prediction were
generated.

Computational CNV prediction
The CNV analysis in our study has two main sections:
computational CNV prediction and validation using a
custom CGH array (Additional file 1: Figure S1). Com-
putational CNV prediction was performed employing 6
CNV prediction programs (Table 1) and a complete list-
ing of the parameters used for all the programs is pre-
sented in Additional file 1: Table S1.
These programs use different statistical models in CNV

calling. However, ExomeCopy and ExomeDepth use a
similar statistical approach based on Hidden Markov Mo-
dels. The main differences between these two programs
are the implementation of exon length normalization
(SubdivideGRange method) in ExomeCopy [13] and gen-
eration of aggregate reference set (select.reference.set
method) in ExomeDepth [14]. As further discussed in re-
sults and discussion, these two programs exhibited the
lowest and highest stringency in CNV calling. Therefore,
to reach improved stringency in CNV calling and to utilize
methods implemented in both ExomeCopy and Exome-
Depth, we designed an algorithm (ExCopyDepth) combi-
ning these two programs (Flow and implementation of
ExCopyDepth; Additional file 1: Figure S2). In ExCopy-
Depth, ExomeCopy is used for exon length normalization
(SubdivideGRange method in ExomeCopy) and to extract
read count and GC% data for these normalized exonic re-
gions (CountBamInGRanges, GetGCcontent methods in
ExomeCopy). Next, the most suitable reference dataset for
each target exome was estimated using read count data
from multiple samples (select.reference.set method in
ExomeDepth). Finally, CNV regions were predicted using
ExomeDepth (CallCNVs method). The initial tile length
normalization performed in our method optimizes the
generation of the aggregate reference set and minimizes
the effect of GC content while CNV calling.

Custom array design (exaCGH)
To verify the ability to computationally call exonic CNVs,
a custom CGH array targeting exonic regions (exaCGH)
was designed using the Agilent eArray web portal [16].
The design process was initiated by the Agilent High-
Definition Probe (HD-Probe) search using a genomic in-
terval list that specifies the 1000 genome exonic regions.
As low probe scores are observed for GC-rich regions, it
is difficult to design high-scoring probes for all exonic
regions. In addition, Agilent guidelines recommend 150-
200 bp minimum probe spacing for optimum probe
hybridization. Therefore, in order to search high scoring
probes and to reach the recommended spacing between
probes, genomic intervals were designed by adding 800 bp
flanking regions to either side of the exonic regions de-
fined in the 1000 genomes exome project. Although the
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incorporation of 800 bp flanking regions extends the
probe search into intronic regions, this shows no negative
effect on detecting short CNVs since the probes are in-
ternal to the CNV. A flowchart of the exaCGH array de-
sign (data preparation, Agilent eArray HD-Search and
evaluation of the search results) is presented in Additional
file 1: Figure S3. The complete design, and capture regions
of exaCGH, are available on request from the authors.
Since probes covering the 1000 genomes exome do not
occupy the whole 1×1M array, the remaining features
were filled by probes covering exonic, CDS (coding re-
gions) and CCDS (conserved coding) regions specified in
the GENCODE v15 annotation [17]. Similar to the exome
definition file used previously, 800 bp flanking regions
were added to the 5′ and 3′ ends of the GENCODE v.15
regions (Additional file 1: Figure S3). After searching
probes for the exon array, the microarray was generated
according to eArray guidelines.
We then compared exaCGH with two commercially

available platforms used to detect CNVs: Agilent 1×1M
array and Affymetrix CytoScan HD. In order to compare
these designs, we utilized exonic and CDS regions speci-
fied in GENCODE V.15 and 800 bp flanking regions
were added to the 5′ and 3′ end. Next, we evaluated the
probe count distribution of each design (Additional file 1:
Figure S4). Probe distributions clearly show that only ~
10% of probes of Affymetrix CytoScan HD and ~1% of
probes of Agilent 1x1M mapped to GENCODE V.15 with
at least 4 probes per exonic and CDS region (including
1600 bp flanking regions). However, in the exaCGH de-
sign, considering only regions containing at least 4 probes,
83.9% of probes map to GENCODE v.15. The analysis of
probe distribution demonstrated that exonic coverage
(with at least 4 probes) of exaCGH is over 99.28 MB of
GENCODEv.15, which is significantly higher than the
Agilent 1×1M (3.5 MB) and Affymetrix CytoScan HD
(6.67 MB). Moreover, to reduce the amount of noise in
CNV detection, it is recommended to only call CNVs with
at least 4 probes when analyzing aCGH results. Thus, the
exaCGH array is a much improved design for detecting
exonic CNVs due to the high probe density over exonic
regions and the high exonic coverage.
Next, exaCGH experiments were performed using 9

DNA samples from the 1000 genomes exome project and
9 DNA samples from primary immunodeficiency patients
following Agilent protocol V. 6.3. Agilent Genomic Work-
bench was used to call CNV regions which were detected
by at least by four probes (with minimum average absolute
log ratio for deletion and duplication > =0.25).

Results and discussion
Computational CNV prediction using published algorithms
For computational CNV prediction we used six different
programs and an algorithm (ExCopyDepth) combining
ExomeCopy and ExomeDepth to detect CNVs from 30
exomes. Since these prediction algorithms depend on a
reference dataset, it is essential that exomes are captured
and sequenced using the same technology. However,
since the technologies used to generate the 30 exomes
obtained from the 1000 genomes project can be grouped
into three different categories (Additional file 1: Table
S2), all the exomes were categorized accordingly and
separate computational CNV predictions were performed
for each group.
Results of the computational algorithms show striking

variation in the length and number of CNVs predicted
by the different programs (Figure 1a, b). For example,
CoNIFER has a count range of 1–248 and ExomeCopy
has a count range of 158–1837. In order to directly com-
pare programs at this level, we identified individual
exons covered by CNVs (exCNVs) from each program.
Analysis of exCNVs shows that the number of exCNVs

predicted by computational programs differ considerably
from each other (Figure 2a, b). For example, ExomeCopy
predicted the highest mean number of exCNVs (1537)
including 741 deleted and 795 duplicated exons. The
lowest number of exCNVs was reported by ExomeDepth
(average exonic CNV count 47, with 19 average number
of deletions and 27 duplications). There are also large
differences in the range of the number of exCNVs pre-
dicted by each program (Figure 2a, b). When comparing
reference datasets used in the programs (Additional file 1:
Table S1), ExomeCNV is the only program that uses a sin-
gle sample (an external exome, NA12282) as a reference.
This makes ExomeCNV results heavily dependent on
depth of coverage distribution of the reference exome
used. Thus ExomeCNV results were not utilized for
downstream analysis.

ExCopyDepth
As shown in previous studies, ExomeCopy demonstrated
higher sensitivity compared to normalization and fast seg-
mentation methods [18] in finding CNVs that overlap few
exons [13]. A higher density over the 10 bp-10 kb range of
CNV length distribution (Figure 1a) and the highest
exCNV count compared to other programs (Figure 2a, b),
may indicate the better performance of ExomeCopy in de-
tecting shorter CNVs with the lowest stringency (which
was tested and confirmed in the following stages of our
study). Additionally, ExomeDepth has been optimized for
detecting rare variants [14]. The lowest exCNV count
observed for ExomeDepth compared to other programs
(Figure 2a, b) may indicate the capability of ExomeDepth
in detecting rare variants with higher stringency.
Since we are interested in detecting shorter CNVs with

improved stringency, we combined different methods
implemented in each of these programs in a modified al-
gorithm, aiming to reach higher stringency compared to



Figure 1 Count and length distributions of CNVs predicted by the programs in the study. (a) Length distribution of CNVs predicted by
each program. (b) Count (number of CNVs) distribution of CNVs predicted by each program.
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ExomeCopy and lower stringency compared to Exome-
Depth. We reasoned that the higher stringency (lower
CNV count) compared to ExomeCopy would have lo-
wer false positive CNV count compared to ExomeCopy,
which was tested and confirmed in a later stage of our
study.
Evaluation of ExCopyDepth demonstrated an aver-

age of 711 exCNVs per exome, while other programs
showed an average exCNV counts between 47 and
1537 (Figure 2a, b). The ExCopyDepth count (711)
that falls away from the extreme ends of the exCNV
count range (47–1537) exhibits the moderate strin-
gency in CNV calling of ExCopyDepth.

Identification of overlapping exCNVs
exCNV counts (from 1000 genome exomes) were spread
over a wide range (0–2500; Figure 2a, b). We reasoned
that intersecting (overlapping) exCNVs predicted by
multiple programs would have a narrower range, and
thus be a better estimate of true CNVs, which appeared
to be the case (Figure 2c, d).
The maximum average number of overlapping de-

letions and duplications (per program combination in
Figure 2c, d) were 242 and 228 (from the intersection of
ExomeCopy and ExCopyDepth), which were significantly
lower than the highest average numbers resulting from
individual programs (741 deletions and 795 duplications,
Figure 2a, b). The number of overlapping exCNVs re-
sulting from the intersection of three or more programs
(combination 2 to 6 in Figure 2c, d) demonstrated a fur-
ther decrease in exCNV count. The lower overlapping
CNV counts from the intersection of ExomeCopy and
ExCopyDepth compared to individual programs may
imply lower false positive rates. We thus evaluated these
predictions on a custom exon array.

Validation of computational predictions using a custom
exon array (exaCGH)
Since standard aCGH platforms exhibit low exonic co-
verage (Additional file 1: Figure S4), we designed a cus-
tom array (exaCGH) with at least 4 probes per exon (see
Methods). Agilent aCGH microarrays have previously
been reported to have the highest sensitivity in detecting
single-copy alterations between 1 and 49 kb [19]. We ran
nine 1000 genomes samples (Additional file 1: Table S3)
with exaCGH to validate CNV predictions from each
program. Additionally, since lower exCNV counts were
shown by the intersection of ExomeCopy and ExCopy-
Depth (Figure 2c, d), these results were also used for ex-
perimental validation.
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Figure 2 exCNVs predicted by programs and overlapping exCNVs predicted by program combinations. Each dot represents an individual
exome. (a) Number of exonic duplications predicted by each program. (b) Number of exonic deletions predicted by each program. (c) Number
of overlapping duplications predicted by each program combination. (d) Number of overlapping deletions predicted by each program
combination. Program combinations (c and d): 1, ExomeCopy/ExCopyDepth; 2, ExomeCopy/ExCopyDepth/CONTRA; 3, ExomeCopy/
ExCopyDepth/CoNIFER; 4, ExomeCopy/ExCopyDepth/XHMM; 5, ExomeCopy/ExCopyDepth/ExomeDepth; 6, ExomeCopy/ExCopyDepth/
ExomeDepth/XHMM; 7, ExomeCopy/ExCopyDepth/CONTRA/XHMM; 8, ExomeCopy/ExCopyDepth/CoNIFER/XHMM.
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For experimental validation, true positives (TPs) were
defined as CNVs which were detected by computational
methods and confirmed by exaCGH. Next, the average
true positive CNV count (AvgTP; for nine 1000 genomes
samples) per program was calculated (Table 2). Exome-
Copy and ExCopyDepth have a higher AvgTP compared
to the other algorithms (Table 2). When considering the
low AvgTP we observed for CoNIFER, ExomeDepth and
XHMM, it is important to note that these programs are
optimized for the identification of rare variants in large
exomes data sets. Therefore, the use of a relatively small
sample collection may contribute to the reported low
TP CNV count.
False positive (FP) CNVs, defined as CNVs which were

predicted only by the computational algorithms, were
then identified. Next, these FP CNVs were compared to
the exaCGH array design and further analyzed. In order
to be conservative in FP identification, only CNV re-
gions that have at least 4 probes in the exaCGH design
were selected as the final set of FP CNVs. Then, the ratio
between TP and FP CNVs (TP/FP ratio) was calculated
for each program (Table 2). CoNIFER (0.92) presented
the highest TP/FP ratio indicating the lowest FP count.
ExomeDepth (0.67) and ExCopyDepth (0.34) showed sec-
ond and third highest TP/FP ratio indicating lower FP
CNV counts. The lowest TP/FP ratio (with highest FP
counts) was exhibited by ExomeCopy and CONTRA
(0.20).
Next, we excluded CNV calls from the X and Y chro-

mosomes and the TP/FP ratio was calculated for each
program to study the effect of using male and female
exomes in a single reference pool. The resulting TP/FP
ratios were higher than the previously calculated ratios
and indicated lower FP CNV count for autosomal chro-
mosomes. The difference in the TP/FP ratio demon-
strated the effect of using male and female samples in
the same reference pool. Thus, splitting the reference
Table 2 True positive (TP)/false positive (FP) CNV ratio predic

Program AvgTP TP

CoNIFER 1.33 (1.33)1 0.9

ExCopyDepth 28.11 (15.86)1 0.3

ExomeCopy 289.33 (226.0)1 0.2

ExomeDepth 1.11 (0.78)1 0.6

Intersection of ExomeCopy / ExCopyDepth 12.89 (7.33)1 0.2

XHMM 4.44 (3.56)1 0.3

CONTRA 17.88 (16.56)1 0.2

TP/FP ratio for each program was calculated using CNVs identified from 9, 1000 gen
positive (AvgTP) = TP/9; TP/FP ratio = TP CNV count /FP CNV count; Average CNVs p
1Average true positive calculated by excluding CNVs in X and Y Chromosomes.
2TP/FP ratio calculated by excluding CNVs in X and Y Chromosomes.
3Total number of CNVs predicted by each program excluding CNVs in X and Y Chro
presented in Figure 1b).
4Average CNVs per sample calculated from counts presented in total CNV count co
exome collection based on gender (when large sample
collections are available) will improve the CNV calling of
X and Y chromosomes.
When considering CONTRA results (Additional file 1:

Table S1), it was observed that CONTRA predicts the
coordinates of each exon with copy number alteration
while all the other programs predict CNVs with one or
multiple exons. Thus, in order to find CONTRA CNVs
that contain one or multiple exons, adjacent exons were
merged and considered as single CNVs, leaving isolated
exons as CNVs with single exons. This set of CNVs are
referred to as CONTRAmerged. Next, CONTRAmerged
CNVs were compared to exaCGH results and TP, AvgTP
and FP were identified. The TP CONTRAmerged CNV
count was 67 (AvgTP: 7.5). CONTRAmerged CNV
counts showed a clear decrease compared to the initial
CONTRA results (AvgTP: 17.88). The FP CONTRA-
merged count was 826 and the TP/FP ratio was 0.08.
This is the lowest TP/FP ratio for all programs, and indi-
cates that CONTRAmerged CNVs exhibits decreased per-
formance in the implemented merge process. Since the
next stages of our study are focused on further analysis of
CNVs with one or multiple exons, CONTRA results were
excluded from downstream analysis and CNVs predictions
from other programs (without post-processing CNV calls)
were utilized.

Analysis of CNVs that cover 1–4 exons
In order to evaluate the utility of computational pro-
grams in detecting shorter CNVs (1–4 exons), we further
analyzed the exon count of each predicted CNV. We
counted the number of exons within each predicted
CNV, and CNVs containing 1–4 exons were identified.
The TP/FP ratio for each program was then calculated
(Table 3). CoNIFER, ExomeDepth and XHMM did not
identify any TP short CNVs. The intersection of Exome-
Copy and ExCopyDepth showed the highest TP/FP ratio,
ted from each program

/FP ratio Total CNV count3 Average CNVs per sample4

2 (1.09)2 23 2.56

4 (0.51)2 422 46.89

0 (0.21)2 11978 1330.89

7 (0.70)2 17 1.89

8 (0.33)2 218 24.22

2 (0.53)2 92 10.22

0 (0.20)2 896 99.56

omes samples run in both computational programs and exaCGH; Average true
er sample = Total CNV count/9.

mosomes (CNV counts for each program including X and Y Chromosomes are

lumn in Table 2.



Table 3 True positive (TP), false positive (FP) and TP/FP ratio for short CNVs (1–4 exons)

Program 1000 genomes exomes Primary immunodeficiency patients

TP FP TP/FP ratio TP FP TP/FP ratio

CONIFER 0 0 4 6 0.67

XHMM 0 4 7 32 0.22

ExomeDepth 0 2 50 301 0.17

ExomeCopy 914 6591 0.14 161 1076 0.15

ExCopyDepth 63 267 0.24 52 669 0.08

Intersection of ExomeCopy/ExCopyDepth 34 76 0.45 44 478 0.09

TP, True positive CNVs (CNVs identified both exaCGH and computational programs); FP, False positive CNVs (CNVs identified only by computational programs but
not by exaCGH); TP/FP ratio, Ratio between true positive and false positive CNVs.
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demonstrating the ability of ExomeCopy and ExCopy-
Depth to detect CNVs that cover 1–4 exons with the
highest FP CNV count.

Mutation identification using exomes from primary
immunodeficiency patients
Since we only tested nine 1000 genome samples with the
exaCGH array, and we wanted to further test the utility of
computational programs in detecting shorter CNVs, we
then ran CNV prediction programs on nine exome sam-
ples from patients with primary immunodeficiency dis-
order (PID). Overlapping CNVs from ExomeCopy and
ExCopyDepth were identified by performing an intersec-
tion between ExomeCopy, ExCopyDepth results. These
results were then mapped to the 1000 genomes exome
definition file and CNVs which were covered by 1 to 4
exons were identified.
In parallel to computational CNV prediction, DNA

samples from the patients were analyzed by exaCGH
and CNV calling was performed using the same criteria
applied to the 1000 genomes exaCGH experiments. The
TP, FP and TP/FP ratio was calculated for CNVs that
cover 1–4 exons for each program. As shown in Table 3,
all the programs were able to detect short exonic CNVs.
ExomeCopy (161), ExCopyDepth (52) and ExomeDepth
(50) presented higher TP CNV counts compared to
other two programs. Moreover CoNIFER showed the
lowest FP count for detecting shorter CNVs for the PID
exome collection. This study of shorter exonic CNVs
using primary immunodeficiency patients exhibited the
applicability of CoNIFER with lower FP CNVs, and Exo-
meCopy, ExCopyDepth and ExomeDepth with higher
TP CNV counts.
The comparison of short CNV detection showed a

higher performance for the intersection of ExomeCopy
and ExCopyDepth in 1000 genomes samples compared
to the PID group. We reasoned that sequence coverage
differences between the two exome groups may contribute
to the contrast in short CNV detection. The percentage of
bases covered by at least 15 reads in 1000 genomes
exomes ranges from 87%-93%, while PID exomes have a
very narrow range (98%-99%). This higher variability of
depth of coverage across the samples in 1000 genomes
collection compared to PID group may contribute to the
difference in the performance. In addition, CNV calling of
1000 genomes exomes was performed by splitting the 30
exomes into 3 groups (with 8, 9 and 13 exomes per group)
when generating reference collections (Additional file 1:
Table S2) whereas PID CNV calling was performed using
a reference collection with 22 samples. When considering
previous benchmark studies on ExomeDepth, CoNIFER
and XHMM, these programs were tested using large refer-
ence collections (eg. authors of CoNIFER have tested the
program using 366 exomes [5]) and XHMM explicitly
claims that it is designed to call CNVs from reference col-
lections with at least 50 exomes [20]. Thus, in addition to
the higher variation of read depth across the reference
pool, we believe that the use of small sample collec-
tions in 1000 genomes exomes also contribute to de-
crease the performances of ExomeDepth, CoNIFER
and XHMM compared to the intersection of Exome-
Copy and ExCopyDepth.
In order to further evaluate short CNV prediction of

each program, we used CNVs identified from both ex-
ome groups (1000 genomes exomes and PID patients)
and examined the number of exons within each pre-
dicted TP CNV. Here we compared the relative cumula-
tive frequency distributions of exon count per TP CNVs
predicted by computational algorithms. Figure 3 clearly
shows that only a small proportion of the CNVs identi-
fied by CoNIFER and XHMM contained 1–4 exons com-
pared to ExomeCopy and ExCopyDepth. For example, ~
15% of CoNIFER and XHMM TP CNVs contain 1–4
exons, while ~40% of intersection of ExomeCopy and
ExCopyDepth and ~45% of ExCopyDepth and ~60% of
ExomeCopy identified TP CNVs with 1–4 exons. Analysis
of the exon count distribution from each program clearly
demonstrated the improved performances of ExomeCopy,
ExCopyDepth and the intersection of ExomeCopy and
ExCopyDepth in detecting shorter CNVs compared to
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ExomeDepth, XHMM and CoNIFER. Hence, we further
studied the statistical models and methods implemented
in each program and detailed comparison of these algo-
rithmic features affecting short CNV prediction is pre-
sented in Additional file 1: Text S1.
Analysis of the copy number state (CNS) predicted by
each program
We analyzed TP CNVs to study the consistency of com-
putational algorithms in predicting the CNS of a genomic
locus. To do this, we compared the computationally pre-
dicted genomic regions from each exome (1000 genomes
exomes and PID patient exomes) to the corresponding
Table 4 Analysis of copy number state (CNS) predicted by dif

Program combinations Number of ge
with different

ExomeCopy, ExCopyDepth 0

ExomeCopy, ExCopyDepth, ExomeDepth 1

ExomeCopy, ExCopyDepth, ExomeDepth, CoNIFER 3

ExomeCopy, ExCopyDepth, ExomeDepth, CoNIFER, XHMM 0

ExomeCopy, ExCopyDepth, ExomeDepth, XHMM 1

ExomeCopy, ExomeDepth 0

ExCopyDepth, ExomeDepth 3

ExCopyDepth, ExomeDepth, XHMM 0
exaCGH result. Then we studied the consistency of pre-
dicted CNS of each locus by intersecting the results of
multiple program combinations (Table 4). The results
show that ExomeCopy, ExCopyDepth, ExomeDepth and
CoNIFER predicted the same CNS only for 50% of the
regions detected by all 4 programs. For only 4 regions
did all 5 programs agree on the CNS. In contrast, 91.2%
of ExCopyDepth and ExomeDepth predictions and
97.4% of ExomeCopy, ExCopyDepth and ExomeDepth
predictions showed the same CNSs. The observed 8.8%
and 2.6% difference in CNS is due to the difference in
the segmentation implemented in ExCopyDepth and
ExomeDepth. With the analysis of CNSs, it is important
to note that computational algorithms were better at
ferent program combinations

nomic regions
CNS

Number of genomic
regions with same CNS

% of genomic regions
with same CNS

9 100.00

37 97.37

3 50.00

4 100.00

9 90.00

4 100.00

31 91.18

4 100.00
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predicting copy number variable regions rather than
actual CNSs.

Evaluation of the performance of computational CNV
prediction algorithms
In order to assess the performance of the programs used,
we calculated the sensitivity and false positive rate (FPR)
using experimentally validated computational predictions.
In addition to TP and FP CNVs, false negative (FN) CNVs
were also identified from both exome groups for sensitiv-
ity calculations. FN CNVs were considered as the CNVs
which were detected only by the exaCGH array experi-
ments but not predicted by computational programs.
Next, sensitivity and FPR were calculated for each pro-

gram (Figure 4). ExomeCopy had higher FPR compared
to the other programs while CoNIFER had the lowest
false positive rate. When considering the lower sensitiv-
ities observed for ExomeDepth, CoNIFER and XHMM,
it is important to note that these programs were opti-
mized to detect rare CNVs. CoNIFER and XHMM were
further optimized to detect CNVs containing 3 or more
exons [15]. Optimizations implemented in these algo-
rithms contribute to the high FN count and affects the
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a slight decrease in the sensitivity and a clear decrease in
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samples (38.9%) showed very high FPRs (FPR > 0.95) for
ExomeCopy (Figure 4a) while only 1 sample (5.5%)
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and ExCopyDepth (Figure 4c).
With the evaluation of the performance of CNV predic-

tion algorithms, the clinical utility of these algorithms was
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for a previously reported disease-causing single-nucleotide
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pound heterozygosity was expected. Further examination
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(NM_000135.2), suggesting a deletion at this locus. Ana-
lysis of CNVs showed that ExomeCopy, ExCopyDepth,
ExomeDepth and CoNIFER (all the programs except
XHMM) predicted the deletion between exon 26–37 in
FANCA. exaCGH validated the result, showing a deletion
covering the same region in FANCA (Additional file 1:
Figure S5), and confirmed the higher sensitivity observed
for these programs.
In summary, ExomeCopy, ExCopyDepth and the inter-

section of ExomeCopy showed a higher performance in
short CNV prediction compared to ExomeDepth, XHMM
and CoNIFER (Figure 3). Moreover, all the computational
prediction programs have high FPRs (Figure 4). Thus, in
order to predict and to confirm short exonic CNVs, we
propose a protocol with two stages combining computer
predictions and custom CGH array (exaCGH) experi-
ments. Stage one: initial CNV prediction by selecting the
program or program combination depending on the target
exome collection and user requirement. Stage two: va-
lidation of computational predictions using exaCGH
experiments. When selecting a program (or program
combination) for short CNV detection, the intersection of
ExomeCopy and ExCopyDepth should be used as it
demonstrated better performance in detecting shorter
CNVs compared to ExomeDepth, XHMM and CoNIFER
(Figure 3) with lower FPR compared to ExomeCopy. Im-
portantly, the intersection of ExomeCopy and ExCopy-
Depth showed improved performance compared to other
programs when relatively small sample collections (8–13
exomes) were used for the reference pool or when read
depth of the exomes in a reference pool varied over a wide
range (TP/FP ratios of 1000 genomes exomes, Table 3).
ExomeDepth can be selected to predict rare exonic CNVs
with higher sensitivity compared to CoNIFER and XHMM
(Figure 4d) when relatively large exome collections were
available. However, it is important to note that short CNV
detection of ExomeDepth is superior only to CoNIFER
and XHMM (Figure 3). If the user requirement is to reach
the lowest FPR in predicting CNVs (regardless of the
lowest short CNV detection), CoNIFER can be selected
(Figure 4e). As discussed earlier, all the programs demon-
strated high FPR and showed inconsistency in predicting
copy number state (Table 4). Thus, computationally pre-
dicted CNVs can be validated using exaCGH experiments
(stage two of our protocol) and true positive CNVs can be
confirmed.
In an era where many exome sequencing projects are

moving toward detecting disease associated variants in
lists of candidate genes, our proposed two stage protocol
can be implemented to detect and confirm short CNVs.
Stage one can be implemented to predict short CNVs in
candidate genes, this overcomes the large FP rate when
looking genome-wide. Stage two can then be used to val-
idate predicted CNVs by exaCGH.
Conclusions
In summary, computational methods for CNV identifica-
tion show clear variation in the number and size of pre-
dicted CNVs. Evaluating the sensitivity and false positive
rate of computational programs identified the highest
sensitivity for ExomeDepth in detecting rare CNVs and
the lowest false positive rate for CoNIFER. Following the
analysis of short CNVs (1–4 exons), we designed a proto-
col to identify shorter exonic CNVs by combining compu-
tational prediction and custom aCGH methods, which has
high relevance for mutation detection in candidate gene
studies.
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