21 research outputs found
The Importance of Tree Size and Fecundity for Wind Dispersal of Big-Leaf Mahogany
Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae) in the Brazilian Amazon at 25 relatively isolated trees using multiple 1-m wide belt transects extended 100 m downwind. Tree diameter and fecundity correlated positively with increased seed shadow extent; but in combination large, high fecundity trees contributed disproportionately to longer-distance dispersal events (>60 m). Among three empirical models fitted to seed density vs. distance in one dimension, the Student-t (2Dt) generally fit best (compared to the negative exponential and inverse power). When seedfall downwind was modelled in two dimensions using a normalised sample, it peaked furthest downwind (c. 25 m) for large, high-fecundity trees; with the inverse Gaussian and Weibull functions providing comparable fits that were slightly better than the lognormal. Although most seeds fell within 30 m of parent trees, relatively few juveniles were found within this distance, resulting in juvenile-to-seed ratios peaking at c. 35–45 m. Using the 2Dt model fits to predict seed densities downwind, coupled with known fecundity data for 2000–2009, we evaluated potential Swietenia regeneration near adults (≤30 m dispersal) and beyond 30 m. Mean seed arrival into canopy gaps >30 m downwind was more than 3× greater for large, high fecundity trees than small, high-fecundity trees. Tree seed production did not necessarily scale up proportionately with diameter, and was not consistent across years, and this resulting intraspecific variation can have important consequences for local patterns of dispersal in forests. Our results have important implications for management and conservation of big-leaf mahogany populations, and may apply to other threatened wind-dispersed Meliaceae trees
Luminosity Upgrades For The Slc
Recent performance improvements at the SLAC Linear Collider (SLC) have led to a proposal to further increase the luminosity up to a factor of four through a series of modest hardware upgrades. New final focus optics introduced in 1997 combined with permanent magnet octupoles have reduced the contribution to the final beam size due to higher order aberrations. The minimum betas achievable at the IP are presently limited by the increase in detector backgrounds as the beam is focused more strongly. By moving the final quadrupoles closer to the interaction point (IP), one can reduce the synchrotron radiation background while decreasing the IP betas. Other upgrades include increasing the bending radius in the final focus to minimize emittance dilutions due to synchrotron radiation, a fast feedforward from the linac to the final focus to cancel trajectory jitter, and a change in the horizontal damping ring partition number to reduce the emittance of the extracted beam. With these upgrades, t..
Observation of CP violation in the B0 meson system
We present an updated measurement of time-dependent CP-violating asymmetries
in neutral B decays with the BABAR detector at the PEP-II asymmetric B Factory
at SLAC. This result uses an additional sample of Upsilon(4S) decays collected
in 2001, bringing the data available to 32 million B-anti-B pairs. We select
events in which one neutral B meson is fully reconstructed in a final state
containing charmonium and the flavor of the other neutral B meson is determined
from its decay products. The amplitude of the CP-violating asymmetry, which in
the Standard Model is proportional to sin2beta, is derived from the decay time
distributions in such events. The result sin2beta = 0.59 +/- 0.14 (stat) +/-
0.05 (syst) establishes CP violation in the B^0 meson system. We also determine
|lambda| = 0.93 +/- 0.09 {stat} +/- 0.03 {syst}, consistent with no direct CP
violation.Comment: 8 pages, 2 figures, submitted to Physical Review Letter
Measurement of CP-Violating Asymmetries in B0 Decays to CP Eigenstates
We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23×10^6 ϒ(4S)→BB̅ decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events in which one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the standard model is proportional to sin2β, is derived from the decay time distributions in such events. The result is sin2β = 0.34±0.20(stat)±0.05(syst)