19 research outputs found

    Apparatus for transferring cryogenic liquids Patent

    Get PDF
    Apparatus for cryogenic liquid storage with heat transfer reduction and for liquid transfer at zero gravity condition

    The 100 kW experimental wind turbine generator project

    Get PDF
    The Energy Research and Development Administration and the NASA Lewis Research Center engaged jointly in a Wind Energy Program which included the design and erection of a 100 kW wind turbine generator. This test machine consists of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades, operates at 40 rpm and generates 100 kW of electrical power at a wind velocity of 18 mph. The entire assembly is placed on top of a tower 100 feet above ground level. The machine was scheduled to be ready for operation in August, 1975

    Preliminary design of a 100 kW turbine generator

    Get PDF
    The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level

    Measured performance of a tip-controlled, teetered rotor with an NACA 64 sub 3-618 tip airfoil

    Get PDF
    Tests were conducted on the Mod-O 100 kW Wind Turbine to determine the performance of a tip-controlled rotor having an NACA 64 sub-618 airfoil over the moveable outboard 30% of the blade, while operating at nominal rotor speeds of 21 and 31 rpm. Tests were conducted at two rotor speeds to assess the performance improvement which could be realized with 2-speed operation. Test data are compared with analytical predictions and concluding remarks are presented. The results indicate a clear performance improvement for the 2-speed operation

    Design, fabrication, and test of a steel spar wind turbine blade

    Get PDF
    The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested

    Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    Get PDF
    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized

    Government review of the Mod-2 wind turbine (as-built)

    Get PDF
    The findings and recommendations of the Government committee formed to conduct an as-built review of the three Mod-2 wind turbine units at Goldendale, Washington are given. The purpose of the review was to identify any critical deficiencies in machine components that could result in failure, and to recommend any necessary corrective action before resuming safe machine operation. The review concluded that one of the deficiencies identified would preclude planned attended or unattended operation, provided that certain corrective actions were implemented

    Deep Mid-Infrared Silicate Absorption as a Diagnostic of Obscuring Geometry Toward Galactic Nuclei

    Get PDF
    The silicate cross section peak near 10um produces emission and absorption features in the spectra of dusty galactic nuclei observed with the Spitzer Space Telescope. Especially in ultraluminous infrared galaxies, the observed absorption feature can be extremely deep, as IRAS 08572+3915 illustrates. A foreground screen of obscuration cannot reproduce this observed feature, even at large optical depth. Instead, the deep absorption requires a nuclear source to be deeply embedded in a smooth distribution of material that is both geometrically and optically thick. In contrast, a clumpy medium can produce only shallow absorption or emission, which are characteristic of optically-identified active galactic nuclei. In general, the geometry of the dusty region and the total optical depth, rather than the grain composition or heating spectrum, determine the silicate feature's observable properties. The apparent optical depth calculated from the ratio of line to continuum emission generally fails to accurately measure the true optical depth. The obscuring geometry, not the nature of the embedded source, also determines the far-IR spectral shape.Comment: To appear in ApJ

    The dusty heart of nearby active galaxies. I. High-spatial resolution mid-IR spectro-photometry of Seyfert galaxies

    Full text link
    We present 8-13 micron imaging and spectroscopy of 9 type 1 and 10 type 2 AGN obtained with the VLT/VISIR instrument at spatial resolution <100 pc. The emission from the host galaxy sources is resolved out in most cases. The silicate absorption features are moderately deep and emission features are shallow. We compare the mid-IR luminosities to AGN luminosity tracers and found that the mid-IR radiation is emitted quite isotropically. In two cases, IC5063 and MCG-3-34-64, we find evidence for extended dust emission in the narrow-line region. We confirm the correlation between observed silicate feature strength and Hydrogen column density recently found in Spitzer data. In a further step, our 3D clumpy torus model has been used to interpret the data. We show that the strength of the silicate feature and the mid-IR spectral index can be used to get reasonable constraints on the dust distribution in the torus. The mid-IR spectral index, alpha, is almost exclusively determined by the radial dust distribution power-law index, a, and the silicate feature depth is mostly depending on the average number of clouds, N0, along an equatorial line-of-sight and the torus inclination. A comparison of model predictions to our type 1 and type 2 AGN reveals typical average parameters a=-1.0+/-0.5 and N0=5-8, which means that the radial dust distribution is rather shallow. As a proof-of-concept of this method, we compared the model parameters derived from alpha and the silicate feature to more detailed studies of IR SEDs and interferometry and found that the constraints on a and N0 are consistent. Finally, we might have found evidence that the radial structure of the torus changes from low to high AGN luminosities towards steeper dust distributions, and we discuss implications for the IR size-luminosity relation. (abridged)Comment: 22 pages, 13 figues, 6 tables; Accepted for publication in A&A; Note that this is the second submitted paper from the series, but we changed paper order. This one will be referred to as paper I, the previously submitted arXiv:0909.4539 will become paper I

    Infrared Spectral Energy Distributions of Seyfert Galaxies: Spitzer Space Telescope Observations of the 12 micron Sample of Active Galaxies

    Get PDF
    The mid-far-infrared spectral energy distributions (SEDs) of 83 active galaxies, mostly Seyfert galaxies, selected from the extended 12 micron sample are presented. The data were collected using all three instruments, IRAC, IRS, and MIPS, aboard the Spitzer Space Telescope. The IRS data were obtained in spectral mapping mode, and the photometric data from IRAC and IRS were extracted from matched, 20 arcsec diameter circular apertures. The MIPS data were obtained in SED mode, providing very low resolution spectroscopy (R ~ 20) between ~ 55 and 90 microns in a larger, 20 by 30 arcsec synthetic aperture. We further present the data from a spectral decomposition of the SEDs, including equivalent widths and fluxes of key emission lines; silicate 10 and 18 micron emission and absorption strengths; IRAC magnitudes; and mid-far infrared spectral indices. Finally, we examine the SEDs averaged within optical classifications of activity. We find that the infrared SEDs of Seyfert 1s and Seyfert 2s with hidden broad line regions (HBLR, as revealed by spectropolarimetry or other technique) are qualitatively similar, except that Seyfert 1s show silicate emission and HBLR Seyfert 2s show silicate absorption. The infrared SEDs of other classes with the 12 micron sample, including Seyfert 1.8-1.9, non-HBLR Seyfert 2 (not yet shown to hide a type 1 nucleus), LINER and HII galaxies, appear to be dominated by star-formation, as evidenced by blue IRAC colors, strong PAH emission, and strong far-infrared continuum emission, measured relative to mid-infrared continuum emission.Comment: 78 pages, 13 figure
    corecore