120 research outputs found

    Low Space External Memory Construction of the Succinct Permuted Longest Common Prefix Array

    Full text link
    The longest common prefix (LCP) array is a versatile auxiliary data structure in indexed string matching. It can be used to speed up searching using the suffix array (SA) and provides an implicit representation of the topology of an underlying suffix tree. The LCP array of a string of length nn can be represented as an array of length nn words, or, in the presence of the SA, as a bit vector of 2n2n bits plus asymptotically negligible support data structures. External memory construction algorithms for the LCP array have been proposed, but those proposed so far have a space requirement of O(n)O(n) words (i.e. O(nlogn)O(n \log n) bits) in external memory. This space requirement is in some practical cases prohibitively expensive. We present an external memory algorithm for constructing the 2n2n bit version of the LCP array which uses O(nlogσ)O(n \log \sigma) bits of additional space in external memory when given a (compressed) BWT with alphabet size σ\sigma and a sampled inverse suffix array at sampling rate O(logn)O(\log n). This is often a significant space gain in practice where σ\sigma is usually much smaller than nn or even constant. We also consider the case of computing succinct LCP arrays for circular strings

    Storage and retrieval of individual genomes

    Get PDF
    Volume: 5541A repetitive sequence collection is one where portions of a base sequence of length n are repeated many times with small variations, forming a collection of total length N. Examples of such collections are version control data and genome sequences of individuals, where the differences can be expressed by lists of basic edit operations. Flexible and efficient data analysis on a such typically huge collection is plausible using suffix trees. However, suffix tree occupies O(N log N) bits, which very soon inhibits in-memory analyses. Recent advances in full-text self-indexing reduce the space of suffix tree to O(N log σ) bits, where σ is the alphabet size. In practice, the space reduction is more than 10-fold, for example on suffix tree of Human Genome. However, this reduction factor remains constant when more sequences are added to the collection. We develop a new family of self-indexes suited for the repetitive sequence collection setting. Their expected space requirement depends only on the length n of the base sequence and the number s of variations in its repeated copies. That is, the space reduction factor is no longer constant, but depends on N / n. We believe the structures developed in this work will provide a fundamental basis for storage and retrieval of individual genomes as they become available due to rapid progress in the sequencing technologies.Peer reviewe

    Erythropoietin: a multimodal neuroprotective agent

    Get PDF
    The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent

    HSRA: Hadoop-based spliced read aligner for RNA sequencing data

    Get PDF
    [Abstract] Nowadays, the analysis of transcriptome sequencing (RNA-seq) data has become the standard method for quantifying the levels of gene expression. In RNA-seq experiments, the mapping of short reads to a reference genome or transcriptome is considered a crucial step that remains as one of the most time-consuming. With the steady development of Next Generation Sequencing (NGS) technologies, unprecedented amounts of genomic data introduce significant challenges in terms of storage, processing and downstream analysis. As cost and throughput continue to improve, there is a growing need for new software solutions that minimize the impact of increasing data volume on RNA read alignment. In this work we introduce HSRA, a Big Data tool that takes advantage of the MapReduce programming model to extend the multithreading capabilities of a state-of-the-art spliced read aligner for RNA-seq data (HISAT2) to distributed memory systems such as multi-core clusters or cloud platforms. HSRA has been built upon the Hadoop MapReduce framework and supports both single- and paired-end reads from FASTQ/FASTA datasets, providing output alignments in SAM format. The design of HSRA has been carefully optimized to avoid the main limitations and major causes of inefficiency found in previous Big Data mapping tools, which cannot fully exploit the raw performance of the underlying aligner. On a 16-node multi-core cluster, HSRA is on average 2.3 times faster than previous Hadoop-based tools. Source code in Java as well as a user’s guide are publicly available for download at http://hsra.dec.udc.es.Ministerio de Economía, Industria y Competitividad; TIN2016-75845-PXunta de Galicia; ED431G/0

    Ectopic Expression of Neurogenin 2 Alone is Sufficient to Induce Differentiation of Embryonic Stem Cells into Mature Neurons

    Get PDF
    Recent studies show that combinations of defined key developmental transcription factors (TFs) can reprogram somatic cells to pluripotency or induce cell conversion of one somatic cell type to another. However, it is not clear if single genes can define a cell̀s identity and if the cell fate defining potential of TFs is also operative in pluripotent stem cells in vitro. Here, we show that ectopic expression of the neural TF Neurogenin2 (Ngn2) is sufficient to induce rapid and efficient differentiation of embryonic stem cells (ESCs) into mature glutamatergic neurons. Ngn2-induced neuronal differentiation did not require any additional external or internal factors and occurred even under pluripotency-promoting conditions. Differentiated cells displayed neuron-specific morphology, protein expression, and functional features, most importantly the generation of action potentials and contacts with hippocampal neurons. Gene expression analyses revealed that Ngn2-induced in vitro differentiation partially resembled neurogenesis in vivo, as it included specific activation of Ngn2 target genes and interaction partners. These findings demonstrate that a single gene is sufficient to determine cell fate decisions of uncommitted stem cells thus giving insights into the role of key developmental genes during lineage commitment. Furthermore, we present a promising tool to improve directed differentiation strategies for applications in both stem cell research and regenerative medicine

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    Global scaling of the heat transport in fusion plasmas

    Get PDF

    Investigation into the formation of the scrape-off layer density shoulder in JET ITER-like wall L-mode and H-mode plasmas

    Get PDF
    The low temperature boundary layer plasma (Scrape-Off-Layer or SOL) between the hot core and the surrounding vessel determines the level of power-loading, erosion and implantation of material surfaces, and thus the viability of tokamak-based fusion as an energy source. This study explores mechanisms affecting the formation of flattened density profiles, so-called ‘density shoulders’, in the low-field side (LFS) SOL, which modify ion and neutral fluxes to surfaces – and subsequent erosion. There is evidence against local enhancement of ionization inducing shoulder formation. We find that increases in SOL parallel resistivity, Λdiv (=[L||νei Ωi ]/cs Ωe), postulated to lead to shoulder growth through changes in SOL turbulence characteristics, correlates with increases in upstream SOL shoulder amplitude, As only under a subset of conditions (D2-fuelled L-mode density scans with outer strike point on the horizontal target). Λdiv fails to correlate with As for cases of N2 seeding or during sweeping of the strike point across the horizontal target. The limited correlation of Λdiv with As was also found for H-mode discharges. Thus, while Λdiv above a threshold of ~1 may be necessary for shoulder formation and/or growth, another shoulder mechanism is required. More significantly we find that in contrast to parallel resistivity, outer divertor recycling as quantified by the total outer divertor Balmer Dα emission, I-Dα, does scale with shoulder amplitude where Λdiv does and even where Λdiv fails. Divertor recycling could lead to SOL density shoulder formation through: a) reducing the parallel to the field flow (loss) of ions out of the SOL to the divertor; and b) changes in radial electric fields which lead to ExB poloidal flows as well as potentially affecting the SOL turbulence birth characteristics. Thus changes in divertor recycling may be the sole process in bringing about SOL density shoulders or in tandem with parallel resistivity

    Overview of the JET results in support to ITER

    Get PDF
    corecore