10 research outputs found

    Do rye product structure, product perceptions and oral processing modulate satiety?

    Get PDF
    Food structure and cephalic phase factors are hypothesized to contribute to postprandial satiety in addition to established food properties such as energy content, energy density, and macronutrient and fibre composition of a preload. This study aimed to evaluate if the structure of rye products has an impact on subjective feelings of satiety, and whether cephalic phase factors including oral processing, satiety expectations and perceived pleasantness modulate the interaction. Four wholegrain rye based samples (extruded flakes and puffs, bread and smoothie) were studied in terms of texture characteristics, in vivo oral processing, and expected satiety (n=26) and satiety as well as perceived pleasantness (n=16) (ClinicalTrials.gov number: NCT02554162). The vast textural differences between products were reflected in mastication process, perceived pleasantness and satiety expectations. Extruded products required the most intensive mastication. Rye puffs and rye bread which were characterized by a solid and porous structure, and showed better satiety effect in the early postprandial phase compared to other products. Mastication effort interacted with satiety response. However, the products requiring the highest mastication effort were not the most satiating ones. It seems that there are some food structure related mechanisms that influence both mastication process and postprandial satiety, the mastication process itself not being the mediating factor. Higher palatability seems to weaken postprandial satiety response.Peer reviewe

    Randomized controlled trials in de-implementation research : a systematic scoping review

    Get PDF
    Background: Healthcare costs are rising, and a substantial proportion of medical care is of little value. De-implementation of low-value practices is important for improving overall health outcomes and reducing costs. We aimed to identify and synthesize randomized controlled trials (RCTs) on de-implementation interventions and to provide guidance to improve future research. Methods: MEDLINE and Scopus up to May 24, 2021, for individual and cluster RCTs comparing de-implementation interventions to usual care, another intervention, or placebo. We applied independent duplicate assessment of eligibility, study characteristics, outcomes, intervention categories, implementation theories, and risk of bias. Results: Of the 227 eligible trials, 145 (64%) were cluster randomized trials (median 24 clusters; median follow-up time 305 days), and 82 (36%) were individually randomized trials (median follow-up time 274 days). Of the trials, 118 (52%) were published after 2010, 149 (66%) were conducted in a primary care setting, 163 (72%) aimed to reduce the use of drug treatment, 194 (85%) measured the total volume of care, and 64 (28%) low-value care use as outcomes. Of the trials, 48 (21%) described a theoretical basis for the intervention, and 40 (18%) had the study tailored by context-specific factors. Of the de-implementation interventions, 193 (85%) were targeted at physicians, 115 (51%) tested educational sessions, and 152 (67%) multicomponent interventions. Missing data led to high risk of bias in 137 (60%) trials, followed by baseline imbalances in 99 (44%), and deficiencies in allocation concealment in 56 (25%). Conclusions: De-implementation trials were mainly conducted in primary care and typically aimed to reduce low-value drug treatments. Limitations of current de-implementation research may have led to unreliable effect estimates and decreased clinical applicability of studied de-implementation strategies. We identified potential research gaps, including de-implementation in secondary and tertiary care settings, and interventions targeted at other than physicians. Future trials could be improved by favoring simpler intervention designs, better control of potential confounders, larger number of clusters in cluster trials, considering context-specific factors when planning the intervention (tailoring), and using a theoretical basis in intervention design. Registration: OSF Open Science Framework hk4b2.Peer reviewe

    Randomized controlled trials in de-implementation research : a systematic scoping review

    Get PDF
    Background: Healthcare costs are rising, and a substantial proportion of medical care is of little value. De-implementation of low-value practices is important for improving overall health outcomes and reducing costs. We aimed to identify and synthesize randomized controlled trials (RCTs) on de-implementation interventions and to provide guidance to improve future research. Methods: MEDLINE and Scopus up to May 24, 2021, for individual and cluster RCTs comparing de-implementation interventions to usual care, another intervention, or placebo. We applied independent duplicate assessment of eligibility, study characteristics, outcomes, intervention categories, implementation theories, and risk of bias. Results: Of the 227 eligible trials, 145 (64%) were cluster randomized trials (median 24 clusters; median follow-up time 305 days), and 82 (36%) were individually randomized trials (median follow-up time 274 days). Of the trials, 118 (52%) were published after 2010, 149 (66%) were conducted in a primary care setting, 163 (72%) aimed to reduce the use of drug treatment, 194 (85%) measured the total volume of care, and 64 (28%) low-value care use as outcomes. Of the trials, 48 (21%) described a theoretical basis for the intervention, and 40 (18%) had the study tailored by context-specific factors. Of the de-implementation interventions, 193 (85%) were targeted at physicians, 115 (51%) tested educational sessions, and 152 (67%) multicomponent interventions. Missing data led to high risk of bias in 137 (60%) trials, followed by baseline imbalances in 99 (44%), and deficiencies in allocation concealment in 56 (25%). Conclusions: De-implementation trials were mainly conducted in primary care and typically aimed to reduce low-value drug treatments. Limitations of current de-implementation research may have led to unreliable effect estimates and decreased clinical applicability of studied de-implementation strategies. We identified potential research gaps, including de-implementation in secondary and tertiary care settings, and interventions targeted at other than physicians. Future trials could be improved by favoring simpler intervention designs, better control of potential confounders, larger number of clusters in cluster trials, considering context-specific factors when planning the intervention (tailoring), and using a theoretical basis in intervention design. Registration: OSF Open Science Framework hk4b2.Peer reviewe

    Change in antihypertensive drug prescribing after guideline implementation: a controlled before and after study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antihypertensive drug choices and treatment levels are not in accordance with the existing guidelines. We aimed to assess the impact of a guideline implementation intervention on antihypertensive drug prescribing.</p> <p>Methods</p> <p>In this controlled before and after study, the effects of a multifaceted (education, audit and feedback, local care pathway) quality programme was evaluated. The intervention was carried out in a health centre between 2002 and 2003. From each health care unit (n = 31), a doctor-nurse pair was trained to act as peer facilitators in the intervention.</p> <p>All antihypertensive drugs prescribed by 25 facilitator general practitioners (intervention GPs) and 53 control GPs were retrieved from the nationwide Prescription Register for three-month periods in 2001 and 2003. The proportions of patients receiving specific antihypertensive drugs and multiple antihypertensive drugs were measured before and after the intervention for three subgroups of hypertension patients: hypertension only, with coronary heart disease, and with diabetes.</p> <p>Results</p> <p>In all subgroups, the use of multiple concurrent medications increased. For intervention patients with hypertension only, the odds ratio (OR) was 1.12 (95% CI 0.99, 1.25; p = 0.06) and for controls 1.13 (1.05, 1.21; p = 0.002). We observed no statistically significant differences in the change in the prescribing of specific antihypertensive agents between the intervention and control groups. The use of agents acting on the renin-angiotensin-aldosterone system increased in all subgroups (hypertension only intervention patients OR 1.19 (1.06, 1.34; p = 0.004) and controls OR 1.24 (1.15, 1.34; p < 0.0001).</p> <p>Conclusions</p> <p>A multifaceted guideline implementation intervention does not necessarily lead to significant changes in prescribing performance. Rigorous planning of the interventions and quality projects and their evaluation are essential.</p

    Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances

    Get PDF
    Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption we performed a population based genome-wide association study of ‘age at first tooth’ and ‘number of teeth’ using 5998 and 6609 individuals respectively from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2,446,724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of fifteen independent loci, with ten loci reaching genome-wide significance (p<5x10−8) for ‘age at first tooth’ and eleven loci for ‘number of teeth’. Together these associations explain 6.06% of the variation in ‘age of first tooth’ and 4.76% of the variation in ‘number of teeth’. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including a SNP in the protein-coding region of BMP4 (rs17563, P= 9.080x10−17). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development

    Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances

    Get PDF
    Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption we performed a population based genome-wide association study of ‘age at first tooth’ and ‘number of teeth’ using 5998 and 6609 individuals respectively from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2,446,724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of fifteen independent loci, with ten loci reaching genome-wide significance (p<5x10−8) for ‘age at first tooth’ and eleven loci for ‘number of teeth’. Together these associations explain 6.06% of the variation in ‘age of first tooth’ and 4.76% of the variation in ‘number of teeth’. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including a SNP in the protein-coding region of BMP4 (rs17563, P= 9.080x10−17). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development

    Genome-wide association reveals contribution of MRAS to painful temporomandibular disorder in males

    No full text
    Painful temporomandibular disorders (TMDs) are the leading cause of chronic orofacial pain, but its underlying molecular mechanisms remain obscure. Although many environmental factors have been associated with higher risk of developing painful TMD, family and twin studies support a heritable genetic component as well. We performed a genome-wide association study assuming an additive genetic model of TMD in a discovery cohort of 999 cases and 2031 TMD-free controls from the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study. Using logistic models adjusted for sex, age, enrollment site, and race, we identified 3 distinct loci that were significant in combined or sex-segregated analyses. A single-nucleotide polymorphism on chromosome 3 (rs13078961) was significantly associated with TMD in males only (odds ratio = 2.9, 95% confidence interval: 2.02-4.27, P = 2.2 x 10(-8)). This association was nominally replicated in a meta-analysis of 7 independent orofacial pain cohorts including 160,194 participants (odds ratio - 1.16, 95% confidence interval: 1.0-1.35, P = 2.3 x 10(-2)). Functional analysis in human dorsal root ganglia and blood indicated this variant is an expression quantitative trait locus, with the minor allele associated with decreased expression of the nearby muscle RAS oncogene homolog (MRAS) gene (beta = -0.51, P = 2.43 x 10(-5)). Male mice, but not female mice, with a null mutation of Mras displayed persistent mechanical allodynia in a model of inflammatory pain. Genetic and behavioral evidence support a novel mechanism by which genetically determined MRAS expression moderates the resiliency to chronic pain. This effect is male-specific and may contribute to the lower rates of painful TMD in men1603579591National Institute of Dental and Craniofacial Research (NIDCR)United States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Dental & Craniofacial Research (NIDCR) [U01DE017018]; NIDCRUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Dental & Craniofacial Research (NIDCR) [U01DE017018, HHSN268201200008I]; Canadian Excellence Research Chairs (CERC) Program grant [CERC09]; US Cancer Pain Relief Committee (Career Development Award "Neurochemistry and Physiology of Human Pain-Processing Nuclei"); Federal Ministry of Education and ResearchFederal Ministry of Education & Research (BMBF) [01ZZ9603, 01ZZ0103, 01ZZ0403, 03ZIK012]; Ministry of Cultural Affairs; Social Ministry of the Federal State of Mecklenburg-West Pomerania; network "Greifswald Approach to Individualized Medicine (GANI_MED)" - Federal Ministry of Education and Research [03IS2061A]; Siemens Healthcare (Erlangen, Germany); Federal State of Mecklenburg-West Pomerania; Academy of FinlandAcademy of Finland [104781, 120315, 129269, 1114194, 24300796]; University Hospital Oulu; University of Oulu [75617]; NHLBI grant through the STAMPEED program [5R01HL087679-02, 1RL1MH083268-01]; NIH/National Institute of Mental Health (NIMH) [5R01MH63706: 02]; ENGAGE project; EUEuropean Union (EU) [277849]; Medical Research CouncilMedical Research Council UK (MRC) [G0500539, G0600705, G1002319]; MRC, Centenary Early Career Award; Academy of Finland EGEAproject [285547]; Biocentrum Helsinki; European Commission (EURO-BLCS)European Commission Joint Research Centre [QLG1-CT-2000-01643]; Sigrid Juselius FoundationSigrid Juselius Foundation; US National Institute of Mental HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Mental Health (NIMH) [5R01 MH 63706: 02]; Sao Paulo Research FoundationFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2006/56019-8R, 2009/02520-6]; Canadian Excellence Research Chairs (CERC) Program [CERC09]; NIH/National Institute of Neurological Disorders and Stroke (NINDS)United States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Neurological Disorders & Stroke (NINDS) [NS045685]; National Heart, Lung, and Blood Institute (NHLBI)United States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Heart Lung & Blood Institute (NHLBI) [HHSN268201300001I/N01-HC-65233, HHSN268201300004I/N01-HC-65234, HHSN268201300002I/N01-HC-65235, HHSN268201300003I/N01-HC-65236 Northwestern Univ, HHSN268201300005I/N01-HC-65237]; ENGAGE grant [HEALTH-F4-2007-201413]; Intramural Research Program of the NIH, National Institute of Environmental Health SciencesUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Environmental Health Sciences (NIEHS); Biocenter; [K12DE022793]; [H2020-633595
    corecore