166 research outputs found

    Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mushroom bodies (MBs) are paired brain centers located in the insect protocerebrum involved in olfactory learning and memory and other associative functions. Processes from the Kenyon cells (KCs), their intrinsic neurons, form the bulk of the MB's calyx, pedunculus and lobes. In young adult <it>Drosophila</it>, the last-born KCs extend their processes in the α/β lobes as a thin core (α/β cores) that is embedded in the surrounding matrix of other mature KC processes. A high level of L-glutamate (Glu) immunoreactivity is present in the α/β cores (α/βc) of recently eclosed adult flies. In a <it>Drosophila </it>model of fragile X syndrome, the main cause of inherited mental retardation, treatment with metabotropic Glu receptor (mGluR) antagonists can rescue memory deficits and MB structural defects.</p> <p>Results</p> <p>To address the role of Glu signaling in the development and maturation of the MB, we have compared the time course of Glu immunoreactivity with the expression of various glutamatergic markers at various times, that is, 1 hour, 1 day and 10 days after adult eclosion. We observed that last-born α/βc KCs in young adult as well as developing KCs in late larva and at various pupal stages transiently express high level of Glu immunoreactivity in <it>Drosophila</it>. One day after eclosion, the Glu level was already markedly reduced in the α/βc neurons. Glial cell processes expressing glutamine synthetase and the Glu transporter dEAAT1 were found to surround the Glu-expressing KCs in very young adults, subsequently enwrapping the α/β lobes to become distributed equally over the entire MB neuropil. The vesicular Glu transporter DVGluT was detected by immunostaining in processes that project within the MB lobes and pedunculus, but this transporter is apparently never expressed by the KCs themselves. The NMDA receptor subunit dNR1 is widely expressed in the MB neuropil just after eclosion, but was not detected in the α/βc neurons. In contrast, we provide evidence that DmGluRA, the only <it>Drosophila </it>mGluR, is specifically expressed in Glu-accumulating cells of the MB α/βc immediately and for a short time after eclosion.</p> <p>Conclusions</p> <p>The distribution and dynamics of glutamatergic markers indicate that newborn KCs transiently accumulate Glu at a high level in late pupal and young eclosed <it>Drosophila</it>, and may locally release this amino acid by a mechanism that would not involve DVGluT. At this stage, Glu can bind to intrinsic mGluRs abundant in the α/βc KCs, and to NMDA receptors in the rest of the MB neuropil, before being captured and metabolized in surrounding glial cells. This suggests that Glu acts as an autocrine or paracrine agent that contributes to the structural and functional maturation of the MB during the first hours of <it>Drosophila </it>adult life.</p

    Distribution of the Octopamine Receptor AmOA1 in the Honey Bee Brain

    Get PDF
    Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information

    Central nervous system and muscular bundles preserved in a 240 million year old giant bristletail (Archaeognatha: Machilidae)

    Get PDF
    Among the incomparably diverse group of insects no cases of central nervous system (CNS) preservation have been so far described in compression fossils. A third of the fossil insects collected from a 240-239 million year old (Ma) level at Monte San Giorgio UNESCO World Heritage (SwitzerlandItaly) underwent phosphatization, resulting in the extraordinary preservation of soft tissues. Here we describe Gigamachilis triassicus gen. et sp. nov. (Archaeognatha: Machiloidea: Machilidae) that, with an estimated total length of similar to 80 millimeters, represents the largest apterygote insect ever recorded. The holotype preserves: (i) components of the CNS represented by four abdominal ganglia, optic lobes with neuropils and compound retina;(ii) muscular bundles. Moreover, G. triassicus, possessing morphological features that prompt its assignment to the extant archaeognathan ingroup Machilidae, places the origin of modern lineages to Middle Triassic. Interestingly, at Monte San Giorgio, in the same stratigraphic unit the modern morphology of G. triassicus co-occurs with the ancient one represented by Dasyleptus triassicus (Archaeognatha: dagger Monura). Comparing these two types of body organization we provide a new reconstruction of the possible character evolution leading towards modern archaeognathan forms, suggesting the acquisition of novel features in a lineage of apterygote insects during the Permian or the Lower Triassic

    The Octopamine Receptor OAMB Mediates Ovulation via Ca2+/Calmodulin-Dependent Protein Kinase II in the Drosophila Oviduct Epithelium

    Get PDF
    Ovulation is an essential physiological process in sexual reproduction; however, the underlying cellular mechanisms are poorly understood. We have previously shown that OAMB, a Drosophila G-protein-coupled receptor for octopamine (the insect counterpart of mammalian norepinephrine), is required for ovulation induced upon mating. OAMB is expressed in the nervous and reproductive systems and has two isoforms (OAMB-AS and OAMB-K3) with distinct capacities to increase intracellular Ca2+ or intracellular Ca2+ and cAMP in vitro. Here, we investigated tissue specificity and intracellular signals required for OAMB's function in ovulation. Restricted OAMB expression in the adult oviduct epithelium, but not the nervous system, reinstated ovulation in oamb mutant females, in which either OAMB isoform was sufficient for the rescue. Consistently, strong immunoreactivities for both isoforms were observed in the wild-type oviduct epithelium. To delineate the cellular mechanism by which OAMB regulates ovulation, we explored protein kinases functionally interacting with OAMB by employing a new GAL4 driver with restricted expression in the oviduct epithelium. Conditional inhibition of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), but not protein kinase A or C, in the oviduct epithelium inhibited ovulation. Moreover, constitutively active CaMKII, but not protein kinase A, expressed only in the adult oviduct epithelium fully rescued the oamb female's phenotype, demonstrating CaMKII as a major downstream molecule conveying the OAMB's ovulation signal. This is consistent with the ability of both OAMB isoforms, whose common intracellular signal in vitro is Ca2+, to reinstate ovulation in oamb females. These observations reveal the critical roles of the oviduct epithelium and its cellular components OAMB and CaMKII in ovulation. It is conceivable that the OAMB-mediated cellular activities stimulated upon mating are crucial for secretory activities suitable for egg transfer from the ovary to the uterus

    Glutamate, GABA and Acetylcholine Signaling Components in the Lamina of the Drosophila Visual System

    Get PDF
    Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to γ-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABAB type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABAB receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABAA receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in α-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types

    A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey

    Get PDF
    BACKGROUND: The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile 'zombie', incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. METHODOLOGY AND PRINCIPAL FINDINGS: We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. CONCLUSIONS AND SIGNIFICANCE: We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the parasitoid Jewel Wasp selectively manipulates the cockroach's motivation to initiate walking without interfering with other non-related behaviors

    The Octopamine Receptor OAMB Mediates Ovulation via Ca2+/Calmodulin-Dependent Protein Kinase II in the Drosophila Oviduct Epithelium

    Get PDF
    Ovulation is an essential physiological process in sexual reproduction; however, the underlying cellular mechanisms are poorly understood. We have previously shown that OAMB, a Drosophila G-protein-coupled receptor for octopamine (the insect counterpart of mammalian norepinephrine), is required for ovulation induced upon mating. OAMB is expressed in the nervous and reproductive systems and has two isoforms (OAMB-AS and OAMB-K3) with distinct capacities to increase intracellular Ca2+ or intracellular Ca2+ and cAMP in vitro. Here, we investigated tissue specificity and intracellular signals required for OAMB's function in ovulation. Restricted OAMB expression in the adult oviduct epithelium, but not the nervous system, reinstated ovulation in oamb mutant females, in which either OAMB isoform was sufficient for the rescue. Consistently, strong immunoreactivities for both isoforms were observed in the wild-type oviduct epithelium. To delineate the cellular mechanism by which OAMB regulates ovulation, we explored protein kinases functionally interacting with OAMB by employing a new GAL4 driver with restricted expression in the oviduct epithelium. Conditional inhibition of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), but not protein kinase A or C, in the oviduct epithelium inhibited ovulation. Moreover, constitutively active CaMKII, but not protein kinase A, expressed only in the adult oviduct epithelium fully rescued the oamb female's phenotype, demonstrating CaMKII as a major downstream molecule conveying the OAMB's ovulation signal. This is consistent with the ability of both OAMB isoforms, whose common intracellular signal in vitro is Ca2+, to reinstate ovulation in oamb females. These observations reveal the critical roles of the oviduct epithelium and its cellular components OAMB and CaMKII in ovulation. It is conceivable that the OAMB-mediated cellular activities stimulated upon mating are crucial for secretory activities suitable for egg transfer from the ovary to the uterus

    Candidate Glutamatergic Neurons in the Visual System of Drosophila

    Get PDF
    The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L), transmedullary (Tm), transmedullary Y (TmY), Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am), bushy T (T), translobula plate (Tlp), lobula intrinsic (Lcn, Lt, Li), lobula plate tangential (LPTCs) and lobula plate intrinsic (LPi) cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system
    • …
    corecore