200 research outputs found

    MUSTANG 3.3 Millimeter Continuum Observations of Class 0 Protostars

    Full text link
    We present observations of six Class 0 protostars at 3.3 mm (90 GHz) using the 64-pixel MUSTANG bolometer camera on the 100-m Green Bank Telescope. The 3.3 mm photometry is analyzed along with shorter wavelength observations to derive spectral indices (S_nu ~ nu^alpha) of the measured emission. We utilize previously published dust continuum radiative transfer models to estimate the characteristic dust temperature within the central beam of our observations. We present constraints on the millimeter dust opacity index, beta, between 0.862 mm, 1.25 mm, and 3.3 mm. Beta_mm typically ranges from 1.0 to 2.4 for Class 0 sources. The relative contributions from disk emission and envelope emission are estimated at 3.3 mm. L483 is found to have negligible disk emission at 3.3 mm while L1527 is dominated by disk emission within the central beam. The beta_mm^disk <= 0.8 - 1.4 for L1527 indicates that grain growth is likely occurring in the disk. The photometry presented in this paper may be combined with future interferometric observations of Class 0 envelopes and disks.Comment: 19 pages, 3 figures, AJ accepted, in pres

    Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel'dovich Effect Observations with MUSTANG and Bolocam I: Joint Analysis Technique

    Get PDF
    We present a technique to constrain galaxy cluster pressure profiles by jointly fitting Sunyaev-Zel'dovich effect (SZE) data obtained with MUSTANG and Bolocam for the clusters Abell 1835 and MACS0647. Bolocam and MUSTANG probe different angular scales and are thus highly complementary. We find that the addition of the high resolution MUSTANG data can improve constraints on pressure profile parameters relative to those derived solely from Bolocam. In Abell 1835 and MACS0647, we find gNFW inner slopes of γ=0.360.21+0.33\gamma = 0.36_{-0.21}^{+0.33} and γ=0.380.25+0.20\gamma = 0.38_{-0.25}^{+0.20}, respectively when α\alpha and β\beta are constrained to 0.86 and 4.67 respectively. The fitted SZE pressure profiles are in good agreement with X-ray derived pressure profiles.Comment: 12 pages, 12 figures. Submitted to Ap

    Simons Observatory: Broadband Metamaterial Anti-Reflection Cuttings for Large Aperture Alumina Optics

    Full text link
    We present the design, fabrication, and measured performance of metamaterial Anti-Reflection Cuttings (ARCs) for large-format alumina filters operating over more than an octave of bandwidth to be deployed on the Simons Observatory (SO). The ARC consists of sub-wavelength features diced into the optic's surface using a custom dicing saw with near-micron accuracy. The designs achieve percent-level control over reflections at angles of incidence up to 20^\circ. The ARCs were demonstrated on four 42 cm diameter filters covering the 75-170 GHz band and a 50 mm diameter prototype covering the 200-300 GHz band. The reflection and transmission of these samples were measured using a broadband coherent source that covers frequencies from 20 GHz to 1.2 THz. These measurements demonstrate percent-level control over reflectance across the targeted pass-bands and a rapid reduction in transmission as the wavelength approaches the length scale of the metamaterial structure where scattering dominates the optical response. The latter behavior enables the use of the metamaterial ARC as a scattering filter in this limit.Comment: 9 pages, 8 figures, submitted to Applied Optic

    The Atacama Large Aperture Submillimetre Telescope (AtLAST)

    Full text link
    The coldest and densest structures of gas and dust in the Universe have unique spectral signatures across the (sub-)millimetre bands (ν30950\nu \approx 30-950~GHz). The current generation of single dish facilities has given a glimpse of the potential for discovery, while sub-mm interferometers have presented a high resolution view into the finer details of known targets or in small-area deep fields. However, significant advances in our understanding of such cold and dense structures are now hampered by the limited sensitivity and angular resolution of our sub-mm view of the Universe at larger scales. In this context, we present the case for a new transformational astronomical facility in the 2030s, the Atacama Large Aperture Submillimetre Telescope (AtLAST). AtLAST is a concept for a 50-m-class single dish telescope, with a high throughput provided by a 2~deg - diameter Field of View, located on a high, dry site in the Atacama with good atmospheric transmission up to ν1\nu\sim 1~THz, and fully powered by renewable energy. We envision AtLAST as a facility operated by an international partnership with a suite of instruments to deliver the transformative science that cannot be achieved with current or in-construction observatories. As an 50m-diameter telescope with a full complement of advanced instrumentation, including highly multiplexed high-resolution spectrometers, continuum cameras and integral field units, AtLAST will have mapping speeds hundreds of times greater than current or planned large aperture (>> 12m) facilities. By reaching confusion limits below L_* in the distant Universe, resolving low-mass protostellar cores at the distance of the Galactic Centre, and directly mapping both the cold and the hot (the Sunyaev-Zeldovich effect) circumgalactic medium of galaxies, AtLAST will enable a fundamentally new understanding of the sub-mm Universe.Comment: 20 pages, 5 figures, to be submitted to SPIE Astronomical telescopes & Instruments 2020, Ground-based and Airborne Telescopes VIII (conference 11445, abstract 290

    A Bright Submillimeter Source in the Bullet Cluster (1E0657--56) Field Detected with BLAST

    Get PDF
    We present the 250, 350, and 500 micron detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is coincident with an AzTEC 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 micron and 350 micron centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with the Bullet Cluster. The submillimeter redshift estimate based on 250-1100 micron photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3), consistent with the infrared color redshift estimation of the most likely IRAC counterpart. These flux densities indicate an apparent far-infrared luminosity of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic far-infrared luminosity of the source is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps are available at http://blastexperiment.info

    Freeform three-mirror anastigmatic large-aperture telescope and receiver optics for CMB-S4

    Full text link
    CMB-S4, the next-generation ground-based cosmic microwave background (CMB) observatory, will provide detailed maps of the CMB at millimeter wavelengths to dramatically advance our understanding of the origin and evolution of the universe. CMB-S4 will deploy large and small aperture telescopes with hundreds of thousands of detectors to observe the CMB at arcminute and degree resolutions at millimeter wavelengths. Inflationary science benefits from a deep delensing survey at arcminute resolutions capable of observing a large field of view at millimeter wavelengths. This kind of survey acts as a complement to a degree angular resolution survey. The delensing survey requires a nearly uniform distribution of cameras per frequency band across the focal plane. We present a large-throughput, large-aperture (5-meter diameter) freeform three-mirror anastigmatic telescope and an array of 85 cameras for CMB observations at arcminute resolutions, which meets the needs of the delensing survey of CMB-S4. A detailed prescription of this three-mirror telescope and cameras is provided, with a series of numerical calculations that indicate expected optical performance and mechanical tolerance

    The BLAST View of the Star Forming Region in Aquila (ell=45deg,b=0deg)

    Full text link
    We have carried out the first general submillimeter analysis of the field towards GRSMC 45.46+0.05, a massive star forming region in Aquila. The deconvolved 6 deg^2 (3\degree X 2\degree) maps provided by BLAST in 2005 at 250, 350, and 500 micron were used to perform a preliminary characterization of the clump population previously investigated in the infrared, radio, and molecular maps. Interferometric CORNISH data at 4.8 GHz have also been used to characterize the Ultracompact HII regions (UCHIIRs) within the main clumps. By means of the BLAST maps we have produced an initial census of the submillimeter structures that will be observed by Herschel, several of which are known Infrared Dark Clouds (IRDCs). Our spectral energy distributions of the main clumps in the field, located at ~7 kpc, reveal an active population with temperatures of T~35-40 K and masses of ~10^3 Msun for a dust emissivity index beta=1.5. The clump evolutionary stages range from evolved sources, with extended HII regions and prominent IR stellar population, to massive young stellar objects, prior to the formation of an UCHIIR.The CORNISH data have revealed the details of the stellar content and structure of the UCHIIRs. In most cases, the ionizing stars corresponding to the brightest radio detections are capable of accounting for the clump bolometric luminosity, in most cases powered by embedded OB stellar clusters

    BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths

    Get PDF
    We report multi-wavelength power spectra of diffuse Galactic dust emission from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields in Cygnus X and Aquila. These submillimeter power spectra statistically quantify the self-similar structure observable over a broad range of scales and can be used to assess the cirrus noise which limits the detection of faint point sources. The advent of submillimeter surveys with the Herschel Space Observatory makes the wavelength dependence a matter of interest. We show that the observed relative amplitudes of the power spectra can be related through a spectral energy distribution (SED). Fitting a simple modified black body to this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new insight into the substantial cirrus noise that will be encountered in forthcoming observations.Comment: Submitted to the Astrophysical Journal. Maps and other data are available at http://blastexperiment.info
    corecore