22 research outputs found

    An Overview on Prostate Pathophysiology: New Insights into Prostate Cancer Clinical Diagnosis

    Get PDF
    The prostate is an accessory gland of the male reproductive tract, and its presence is universal in mammals. It is committed to the prostatic fluid production and storage, which is released with other semen components during ejaculation. Such fluid contributes to increasing motility and fertility of the spermatozoa, and the neutralization of the vagina, thus playing an important role in fertilization. Few pathological complications, often progressively aggravated with age, can affect this gland (i.e. benign and malignant proliferative changes; all to be described next in this chapter). Nowadays, the neoplastic expansion is the main motivator and contributor for studies on enlightening of growth regulation mechanisms and physiology of the prostate

    Engineering polycotton fiber surfaces, with an timicrobial activity against S. aureus, E. Coli, C. albicans and SARS-CoV-2

    Get PDF
    Pathogenic microorganisms are becoming a potential threat to the health of human beings and the environment worldwide. In this present study, we have developed a polycotton fiber, in which by incorporation and functionalization of aggregated Ag NPs are achieved by using the pad-dry-cure meth- od. Upon contact, this coating shows antimicrobial activity against S. aureus, E. Coli, C. albicans and SARS-CoV-2. The polycotton AgNP, inhibiting nearly of the virus was able to prevent cross-infections, and does not causes allergies or photoirritation, proving the safety of its use. To the best of our knowledge, this is the first report of an antimicrobial coating that could rapidly reduce the infective load of bacteria, fungi, and inhibit SARS--CoV-2. Taken together, the antimicrobial coating reported herein holds great promise to be developed for further application in healthcare settings

    Unilateral giant renal angiomyolipoma and pulmonary lymphangioleiomyomatosis

    Get PDF
    Angiomyolipomas (AMLs) are mesenchymal neoplasms, named so because\ud of the complex tissue composition represented by variable proportions of\ud mature adipose tissue, smooth muscle cells, and dysmorphic blood vessels.\ud Although AMLs may rise in different sites of the body, they are mostly observed\ud in the kidney and liver. In the case of renal AMLs, they are described in two\ud types: isolated AMLs and AMLs associated with tuberous sclerosis (TS). While\ud most cases of AMLs are found incidentally during imaging examinations and\ud are asymptomatic, others may reach huge proportions causing symptoms.\ud Pulmonary lymphangioleiomyomatosis (LAM) is a rare benign disease\ud characterized by cystic changes in the pulmonary parenchyma and smooth\ud muscle proliferation, leading to a mixed picture of interstitial and obstructive\ud disease. AML and LAM constitute major features of tuberous sclerosis\ud complex (TSC), a multisystem autosomal dominant tumor-suppressor gene\ud complex diagnosis. The authors report the case of a young female patient\ud who presented a huge abdominal tumor, which at computed tomography (CT)\ud show a fat predominance. The tumor displaced the right kidney and remaining\ud abdominal viscera to the left. Chest CT also disclosed pulmonary lesions\ud compatible with lymphangioleiomyomatosis. Because of sudden abdominal\ud pain accompanied by a fall in the hemoglobin level, the patient underwent an\ud urgent laparotomy. The excised tumor was shown to be a giant renal AML with\ud signs of bleeding in its interior. The authors call attention to the diagnosis of\ud AML and the huge proportions that the tumor can reach, as well as for ruling\ud out the TSC diagnosis, once it may impose genetic counseling implications

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    [pt] MODELO PARA AVALIAÇÃO DE RECALQUES EM ATERROS DE DISPOSIÇÃO DE RESÍDUOS SÓLIDOS URBANOS

    No full text
    Esta tese apresenta um novo modelo para a avaliação de recalques em aterros de disposição de resíduos sólidos urbanos. Trata-se de um modelo unidimensional, onde os recalques resultam da ação de duas componentes, uma mecânica e outra biológica, que permite a avaliação da evolução das variações de volume do aterro com o tempo. A componente mecânica é caracterizada por um recalque imediato, causado pela redução da macroporosidade e pela drenagem de líquidos e gases presentes na massa de resíduos no instante da disposição devido à ação das cargas aplicadas, e por uma componente de longo prazo, originada pela deformação lenta da estrutura dos resíduos. A componente biológica é resultado dos processos de decomposição que ocorrem no interior dos aterros, onde a contínua transferência de massa da fase sólida para as fases líquida e, principalmente, gasosa, causa uma redução de volume dos resíduos. Por hipótese, os parâmetros utilizados na avaliação das duas componentes não variam com tempo. O comportamento dos resíduos é analisado a partir de propriedades de suas frações constituintes, possibilitando, desta forma, a análise de situações onde ocorram variações da composição e das condições operacionais. O modelo também permite a análise de aterros com construção em etapas e realização de ensaios de carregamento. Diversos casos históricos, coletados na literatura, foram simulados. Os resultados obtidos com o modelo mostraram-se bastante semelhantes aos de campo, indicando ser válido o conjunto de hipóteses adotadas. Na análise desses casos constatou-se uma falta de padronização na apresentação ou mesmo inexistência das informações necessárias às simulações com o modelo, tornando-se indispensável a adoção de hipóteses, sendo estas fundamentadas em aspectos físicos e observacionais. O modelo mostrou-se bastante versátil, podendo ser adaptado facilmente a novos problemas, incluindo a variação dos parâmetros com o tempo.This thesis presents a new model to evaluate settlements in municipal solid waste fills. It refers to a one dimensional model in which the settlements result from two components, one due to mechanical behavior and the other from biological degradation. The mechanical component is formed by an immediate settlement, in which the load application results in a reduction of the macroporosity and drainage of liquids and gases, and by a long term settlement, associated with waste structure creep. The biological component is a result of the decomposition processes occurring within the waste mass, in which the continuous mass transference from solid phase to liquid and, mainly, to gaseous phase, that causes a waste volume reduction. It was assumed that the parameters used to evaluate both components does not vary with time. The waste behavior is analyzed from its fractions properties, allowing the analysis of problems where the composition and operational conditions change with time. The model can also consider staggered construction of the fill and the simulation of load tests.Several historical cases obtained from literature were simulated. The results of the simulations presented a good representation of the field data, validating the adopted set of hypothesis. During the analysis it was observed a lack of standardization in the way the data are presented and even an absence of data as required by the developed model. In such cases, some hypothesis were adopted based on physical and observational criteria.The developed model was shown to be versatile and can easily be adapted to new problems, including the change of properties of the waste mass with time

    Granulocyte-colony stimulating factor improves MDX mouse response to peripheral nerve injury

    No full text
    Background: G-CSF has been shown to increase neuronal survival, which may positively influence the spinal cord microenvironment during the course of muscular dystrophies. Methodology/Principal Findings: Male MDX mice that were six weeks of age received a left sciatic nerve transection and were treated with intraperitoneal injections of 200 mg/kg/day of G-CSF 7 days before and 7 days after the transection. The axotomy was performed after the cycles of muscular degeneration/regeneration, consistent with previous descriptions of this model of muscular dystrophy. C57BL/10 mice were used as control subjects. Seven days after the surgery, the animals were sacrificed and their lumbar spinal cords were processed for immunohistochemistry (anti-MHC I, anti-Synaptophysin, anti-GFAP and anti-IBA-1) and transmission electron microscopy. MHC I expression increased in both strains of mice after the axotomy. Nevertheless, the MDX mice displayed a significantly smaller MHC I upregulation than the control mice. Regarding GFAP expression, the MDX mice showed a stronger astrogliosis compared with the C57BL/10 mice across all groups. Both groups that were treated with G-CSF demonstrated preservation of synaptophysin expression compared with the untreated and placebo groups. The quantitative analysis of the ultrastructural level showed a preservation of the synaptic covering for the both groups that were treated with G-CSF and the axotomized groups showed a smaller loss of synaptic contact in relation to the treated groups after the lesion. Conclusions/Significance: The reduction of active inputs to the alpha-motoneurons and increased astrogliosis in the axotomized and control groups may be associated with the cycles of muscle degeneration/regeneration that occur postnatally. The G-CSF treated group showed a preservation of the spinal cord microenvironment after the lesion. Moreover, the increase of MHC I expression in the MDX mice that were treated with G-CSF may indicate that this drug performs an active role in regenerative potential after lesions78CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãosem informação2009/06686-6; 2009/05565-0; 2012/14236-

    A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells

    Get PDF
    Introduction: The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment.Methods: The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced.Results: The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival.Conclusions: The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need
    corecore