48 research outputs found

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific

    A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

    Get PDF
    Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.<p></p> Methods: Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays. Results: We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.<p></p> Conclusion: Our results suggest a role of PPARG gene in the development of SSc

    Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis

    Get PDF
    In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci

    Comprehensive analysis of the major histocompatibility complex in systemic sclerosis identifies differential HLA associations by clinical and serological subtypes

    Get PDF
    Objective: The greatest genetic effect reported for systemic sclerosis (SSc) lies in the major histocompatibility complex (MHC) locus. Leveraging the largest SSc genome-wide association study, we aimed to fine-map this region to identify novel human leucocyte antigen (HLA) genetic variants associated with SSc susceptibility and its main clinical and serological subtypes. Methods: 9095 patients with SSc and 17 584 controls genome-wide genotyped were used to impute and test single-nucleotide polymorphisms (SNPs) across the MHC, classical HLA alleles and their composite amino acid residues. Additionally, patients were stratified according to their clinical and serological status, namely, limited cutaneous systemic sclerosis (lcSSc), diffuse cutaneous systemic sclerosis (dcSSc), anticentromere (ACA), antitopoisomerase (ATA) and anti-RNApolIII autoantibodies (ARA). Results: Sequential conditional analyses showed nine SNPs, nine classical alleles and seven amino acids that modelled the observed associations with SSc. This confirmed previously reported associations with HLA-DRB1*11:04 and HLA-DPB1*13:01, and revealed a novel association of HLA-B*08:01. Stratified analyses showed specific associations of HLA-DQA1*02:01 with lcSSc, and an exclusive association of HLA-DQA1*05:01 with dcSSc. Similarly, private associations were detected in HLA-DRB1*08:01 and confirmed the previously reported association of HLA-DRB1*07:01 with ACA-positive patients, as opposed to the HLA-DPA1*02:01 and HLA-DQB1*03:01 alleles associated with ATA presentation. Conclusions: This study confirms the contribution of HLA class II and reveals a novel association of HLA class I with SSc, suggesting novel pathways of disease pathogenesis. Furthermore, we describe specific HLA associations with SSc clinical and serological subtypes that could serve as biomarkers of disease severity and progression.Funding: This work was supported by the Spanish Ministry of Science and Innovation (grant ref. SAF2015-66761-P and RTI20181013 (32-B-100)), Red de Investigación en Inflamación y Enfermedades Reumáticas from Instituto de Salud Carlos III (RD16/0012/0013) and grants from National Institutes of Health (R01AR073284) and DoD (W81XWH-16-1-0296). MAH was funded by the Spanish Ministry of Science and Innovation through the Juan de la Cierva Incorporacion program (ref. IJC2018-035131-I). GO, AB and ALH were supported by the NIHR Manchester Biomedical Research Centre and Versus Arthritis (grant ref 21754)

    GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways

    Full text link
    Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments

    A multicenter study confirms CD226gene association with systemic sclerosis-related pulmonary fibrosis

    Get PDF
    Introduction: CD226 genetic variants have been associated with a number of autoimmune diseases and recently with systemic sclerosis (SSc). The aim of this study was to test the influence of CD226 loci in SSc susceptibility, clinical phenotypes and autoantibody status in a large multicenter European population. Methods: A total of seven European populations of Caucasian ancestry were included, comprising 2,131 patients with SSc and 3,966 healthy controls. Three CD226 single nucleotide polymorphisms (SNPs), rs763361, rs3479968 and rs727088, were genotyped using Taqman 5'allelic discrimination assays. Results: Pooled analyses showed no evidence of association of the three SNPs, neither with the global disease nor with the analyzed subphenotypes. However, haplotype block analysis revealed a significant association for the TCG haplotype (SNP order: rs763361, rs34794968, rs727088) with lung fibrosis positive patients (PBonf = 3.18E-02 OR 1.27 (1.05 to 1.54)). Conclusion: Our data suggest that the tested genetic variants do not individually influence SSc susceptibility but a CD226 three-variant haplotype is related with genetic predisposition to SSc-related pulmonary fibrosis

    Cross-disease Meta-analysis of Genome-wide Association Studies for Systemic Sclerosis and Rheumatoid Arthritis Reveals IRF4 as a New Common Susceptibility Locus

    Get PDF
    Objectives: Systemic sclerosis (SSc) and rheumatoid arthritis (RA) are autoimmune diseases that share clinical and immunological characteristics. To date, several shared SSc- RA loci have been identified independently. In this study, we aimed to systematically search for new common SSc-RA loci through an inter-disease meta-GWAS strategy. Methods: We performed a meta-analysis combining GWAS datasets of SSc and RA using a strategy that allowed identification of loci with both same-direction and opposingdirection allelic effects. The top single-nucleotide polymorphisms (SNPs) were followed-up in independent SSc and RA case-control cohorts. This allowed us to increase the sample size to a total of 8,830 SSc patients, 16,870 RA patients and 43,393 controls. Results: The cross-disease meta-analysis of the GWAS datasets identified several loci with nominal association signals (P-value < 5 x 10-6), which also showed evidence of association in the disease-specific GWAS scan. These loci included several genomic regions not previously reported as shared loci, besides risk factors associated with both diseases in previous studies. The follow-up of the putatively new SSc-RA loci identified IRF4 as a shared risk factor for these two diseases (Pcombined = 3.29 x 10-12). In addition, the analysis of the biological relevance of the known SSc-RA shared loci pointed to the type I interferon and the interleukin 12 signaling pathways as the main common etiopathogenic factors. Conclusions: Our study has identified a novel shared locus, IRF4, for SSc and RA and highlighted the usefulness of cross-disease GWAS meta-analysis in the identification of common risk loci

    IRF4 Newly Identified as a Common Susceptibility Locus for Systemic Sclerosis and Rheumatoid Arthritis in a Cross-Disease Meta-Analysis of Genome-Wide Association Studies

    Get PDF
    Autoría conjunta: Spanish Scleroderma GrpObjective. Systemic sclerosis (SSc) and rheumatoid arthritis (RA) are autoimmune diseases that have similar clinical and immunologic characteristics. To date, several shared SSc-RA genetic loci have been identified independently. The aim of the current study was to systematically search for new common SSc-RA loci through an interdisease meta-genome-wide association (meta-GWAS) strategy. Methods. The study was designed as a meta-analysis combining GWAS data sets of patients with SSc and patients with RA, using a strategy that allowed identification of loci with both same-direction and opposite-direction allelic effects. The top single-nucleotide polymorphisms were followed up in independent SSc and RA case-control cohorts. This allowed an increase in the sample size to a total of 8,830 patients with SSc, 16,870 patients with RA, and 43,393 healthy controls. Results. This cross-disease meta-analysis of the GWAS data sets identified several loci with nominal association signals (P<5 x 10(-6)) that also showed evidence of association in the disease-specific GWAS scans. These loci included several genomic regions not previously reported as shared loci, as well as several risk factors that were previously found to be associated with both diseases. Follow-up analyses of the putatively new SSc-RA loci identified IRF4 as a shared risk factor for these 2 diseases (P-combined=3.29 x 10(-12)). Analysis of the biologic relevance of the known SSc-RA shared loci identified the type I interferon and interleukin-12 signaling pathways as the main common etiologic factors. Conclusion. This study identified a novel shared locus, IRF4, for the risk of SSc and RA, and highlighted the usefulness of a cross-disease GWAS meta-analysis strategy in the identification of common risk loci.Supported by a grant from the Ministerio de Educacion, Cultura y Deporte through the program FPU (to Dr. Lopez-Isac), grant 115565 from the EU/EFPIA Innovative Medicines Initiative Joint Undertaking PRECISESADS (ref. no. 115565) and BIO-1395 from the Junta de Andalucia, grant PI-0590-2010 from the Consejeria de Salud y Bienestar Social, Junta de Andalucia, Spain (to Dr. Ortego-Centeno), a VIDI laureate from the Dutch Association of Research and Dutch Arthritis Foundation (to Dr. Radstake), and grant SAF2012-34435 from the Spanish Ministry of Economy and Competitiveness (to Dr. J. Martin). Dr. Assassi's work was supported by grants KL2-RR-024149-04 and K23-AR-061436 from the NIH, grant 3-UL1-RR-024148 from the NIH National Center for Research Resources, and grant U01-1U01AI09090 from the NIH National Institute of Allergy and Infectious Diseases. Dr. Mayes' work was supported by grant P50-AR-054144 from the NIH National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) Centers of Research Translation, grant N01-AR-0-2251 from the NIAMS SSc Family Registry and DNA Repository, grant PR-1206877 from the Department of Defense, and grant R01-AR-055258 from the NIAMS.Peer reviewe

    Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), "A way of making Europe".Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals

    Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis

    Get PDF
    Introduction: The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc). Methods: In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genotyped by using a predesigned TaqMan allele-discrimination assay technology. Meta-analysis was assessed to determine whether an association exists between the genetic variants and SSc or its main clinical subtypes. Results: No evidence of association between CD40 and CD40LG genes variants and susceptibility to SSc was observed. Similarly, no significant statistical differences were observed when SSc patients were stratified by the clinical subtypes, the serologic features, and pulmonary fibrosis. Conclusions: Our results do not suggest an important role of CD40 and CD40LG gene polymorphisms in the susceptibility to or clinical expression of SSc
    corecore