104 research outputs found

    Comprehensive molecular portrait using next generation sequencing of resected intestinal-type gastric cancer patients dichotomized according to prognosis

    Get PDF
    In this study, we evaluated whether the presence of genetic alterations detected by next generation sequencing may define outcome in a prognostically-selected and histology-restricted population of resected gastric cancer (RGC). Intestinal type RGC samples from 34 patients, including 21 best and 13 worst prognostic performers, were studied. Mutations in 50 cancer-associated genes were evaluated. A significant difference between good and poor prognosis was found according to clinico-pathologic factors. The most commonly mutated genes in the whole population were PIK3CA (29.4%), KRAS (26.5%), TP53 (26.5%) MET (8.8%), SMAD4 (8.8%) and STK11 (8.8%). Multiple gene mutations were found in 14/21 (67%) patients with good prognosis, and 3/13 (23%) in the poor prognosis group. A single gene alteration was found in 5/21 (24%) good and 6/13 (46%) poor prognosis patients. No mutation was found in 2/21 (9.5%) and 4/13 (31%) of these groups, respectively. In the overall series, ß-catenin expression was the highest (82.4%), followed by E-Cadherin (76.5%) and FHIT (52.9%). The good prognosis group was characterized by a high mutation rate and microsatellite instability. Our proof-of-principle study demonstrates the feasibility of a molecular profiling approach with the aim to identify potentially druggable pathways and drive the development of customized therapies for RGC

    Mutational and copy number asset of primary sporadic neuroendocrine tumors of the small intestine

    Get PDF
    Small intestine neuroendocrine tumors (SI-NETs) represent the most common histotype among small intestine neoplasms, and metastatic disease is usually present at diagnosis. A retrospective series of 52 sporadic primary surgically resected SI-NETs, which were metastatic at diagnosis, was analyzed by high-coverage target sequencing (HCTS) for the mutational status of 57 genes and copy number status of 40 genes selected from recently published genome sequencing data. Seven genes were found to be recurrently mutated: CDKN1B (9.6%), APC and CDKN2C (each 7.7%), BRAF, KRAS, PIK3CA, and TP53 (each 3.8%). Copy number analysis showed frequent allelic loss of 4 genes located on chromosome 18 (BCL2, CDH19, DCC, and SMAD4) in 23/52 (44.2%) and losses on chromosomes 11 (38%) and 16 (15%). Other recurrent copy number variations were gains for genes located on chromosomes 4 (31%), 5 (27%), 14 (36%), and 20 (20%). Univariate survival analysis showed that SRC gene copy number gains were associated with a poorer prognosis (p = 0.047). Recurrent copy number variations are important events in SI-NET and SRC may represent a novel prognostic biomarker for this tumor type

    Integrative molecular analysis of combined small-cell lung carcinomas identifies major subtypes with different therapeutic opportunities

    Get PDF
    Background: Combined small-cell lung cancer (C-SCLC) is composed of SCLC admixed with a non-small-cell cancer component. They currently receive the same treatment as SCLC. The recent evidence that SCLC may belong to either of two lineages, neuroendocrine (NE) or non-NE, with different vulnerability to specific cell death pathways such as ferroptosis, opens new therapeutic opportunities also for C-SCLC. Materials and methods: Thirteen C-SCLCs, including five with adenocarcinoma (CoADC), five with large-cell neuroendocrine carcinoma (CoLCNEC) and three with squamous cell carcinoma (CoSQC) components, were assessed for alterations in 409 genes and transcriptomic profiling of 20 815 genes. Results: All 13 cases harbored TP53 (12 cases) and/or RB1 (7 cases) inactivation, which was accompanied by mutated KRAS in 4 and PTEN in 3 cases. Potentially targetable alterations included two KRAS G12C, two PIK3CA and one EGFR mutations. Comparison of C-SCLC transcriptomes with those of 57 pure histology lung cancers (17 ADCs, 20 SQCs, 11 LCNECs, 9 SCLCs) showed that CoLCNEC and CoADC constituted a standalone group of NE tumors, while CoSQC transcriptional setup was overlapping that of pure SQC. Using transcriptional signatures of NE versus non-NE SCLC as classifier, CoLCNEC was clearly NE while CoSQC was strongly non-NE and CoADC exhibited a heterogeneous phenotype. Similarly, using ferroptosis sensitivity/resistance markers, CoSQC was classified as sensitive (as expected for non-NE), CoLCNEC as resistant (as expected for NE) and CoADC showed a heterogeneous pattern. Conclusions: These data support routine molecular profiling of C-SCLC to search for targetable driver alterations and to precisely classify them according to therapeutically relevant subgroups (e.g. NE versus non-NE)

    Lung carcinoid tumours: histology and Ki-67, the eternal rivalry

    Get PDF
    WHO classification of Thoracic Tumours defines lung carcinoid tumours (LCTs) as well-differentiated neuroendocrine neoplasms (NENs) classified in low grade typical (TC) and intermediate grade atypical carcinoids (AC). Limited data exist concerning protein expression and morphologic factors able to predict disease aggressiveness. Though Ki-67 has proved to be a powerful diagnostic and prognostic factor for Gastro-entero-pancreatic NENs, its role in lung NENs is still debated. A retrospective series of 370 LCT from two oncology centers was centrally reviewed. Morphology and immunohistochemical markers (Ki-67, TTF-1, CD44, OTP, SSTR-2A, Ascl1, and p53) were studied and correlated with Overall Survival (OS), Cancer-specific survival (CSS) and Disease-free survival (DFS). Carcinoid histology was confirmed in 355 patients: 297 (83.7%) TC and 58 (16.3%) AC. Ki-67 at 3% was the best value in predicting DFS. Ki-67 ≥ 3% tumours were significantly associated with AC histology, stage III-IV, smoking, vascular invasion, tumour spread through air spaces OTP negativity, and TTF-1, Ascl1 and p53 positivity. After adjustment for center and period of diagnosis, both Ki-67 (≥3 versus <3) and histology (AC versus TC) alone significantly added prognostic information to OS and CSS multivariable model with age, stage and OTP; addition of both variables did not provide further prognostic information. Conversely, an improved significance of the DFS prediction model at multivariate analysis was seen by adding Ki-67 (≥3 versus <3, P adj = 0.01) to TC and AC histological distinction, age, lymph node involvement, residual tumour and OTP. Ki-67 ≥ 3% plays a potentially pivotal role in LCT prognosis, irrespective of histological grade

    Germinal BRCA1-2 pathogenic variants (gBRCA1-2pv) and pancreatic cancer: epidemiology of an Italian patient cohort

    Get PDF
    Objective: Germline BRCA1-2 pathogenic variants (gBRCApv) increase the risk of pancreatic cancer and predict for response to platinating agents and poly(ADP-ribose) polymerase inhibitors. Data on worldwide gBRCApv incidence among pancreatic ductal adenocarcinoma (PDAC) patients are sparse and describe a remarkable geographic heterogeneity. The aim of this study is to analyze the epidemiology of gBRCApv in Italian patients. Materials and methods: Patients of any age with pancreatic adenocarcinoma, screened within 3 months from diagnosis for gBRCApv in Italian oncologic centers systematically performing tests without any selection. For the purposes of our analysis, breast, ovarian, pancreas, and prostate cancer in a patient’s family history was considered as potentially BRCAassociated. Patients or disease characteristics were examined using the c2 test or Fisher’s exact test for qualitative variables and the Student's t-test or ManneWhitney test for continuous variables, as appropriate. Results: Between June 2015 and May 2020, 939 patients were tested by 14 Italian centers; 492 (52%) males, median age 62 years (range 28-87), 569 (61%) metastatic, 273 (29%) with a family history of potentially BRCA-associated cancers. gBRCA1-2pv were found in 76 patients (8.1%; 9.1% in metastatic; 6.4% in non-metastatic). The gBRCA2/ gBRCA1 ratio was 5.4 : 1. Patients with gBRCApv were younger compared with wild-type (59 versus 62 years, P ¼ 0.01). The gBRCApv rate was 17.1% among patients &lt;40 years old, 10.4% among patients 41-50 years old, 9.2% among patients 51-60 years old, 6.7% among patients aged 61-70 years, and 6.2% among patients &gt;70 years old (none out of 94 patients &gt;73 years old). gBRCApv frequency in 845 patients &lt;74 years old was 9%. Patients with/without a family history of potentially BRCA-associated tumors had 14%/6% mutations. Conclusion: Based on our findings of a gBRCApv incidence higher than expected in a real-life series of Italian patients with incident PDAC, we recommend screening all PDAC patients &lt;74 years old, regardless of family history and stage, due to the therapeutic implications and cancer risk prevention in patients' relatives. Key words: germline BRCA, epidemiology, pancreatic cancer genetics, familial cance

    Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D

    Get PDF
    Next-generation sequencing (NGS) was applied to 148 lung neuroendocrine tumours (LNETs) comprising the four World Health Organization classification categories: 53 typical carcinoid (TCs), 35 atypical carcinoid (ACs), 27 large-cell neuroendocrine carcinomas, and 33 small-cell lung carcinomas. A discovery screen was conducted on 46 samples by the use of whole-exome sequencing and high-coverage targeted sequencing of 418 genes. Eighty-eight recurrently mutated genes from both the discovery screen and current literature were verified in the 46 cases of the discovery screen, and validated on additional 102 LNETs by targeted NGS; their prevalence was then evaluated on the whole series. Thirteen of these 88 genes were also evaluated for copy number alterations (CNAs). Carcinoids and carcinomas shared most of the altered genes but with different prevalence rates. When mutations and copy number changes were combined, MEN1 alterations were almost exclusive to carcinoids, whereas alterations of TP53 and RB1 cell cycle regulation genes and PI3K/AKT/mTOR pathway genes were significantly enriched in carcinomas. Conversely, mutations in chromatin-remodelling genes, including those encoding histone modifiers and members of SWI\u2013SNF complexes, were found at similar rates in carcinoids (45.5%) and carcinomas (55.0%), suggesting a major role in LNET pathogenesis. One AC and one TC showed a hypermutated profile associated with a POLQ damaging mutation. There were fewer CNAs in carcinoids than in carcinomas; however ACs showed a hybrid pattern, whereby gains of TERT, SDHA, RICTOR, PIK3CA, MYCL and SRC were found at rates similar to those in carcinomas, whereas the MEN1 loss rate mirrored that of TCs. Multivariate survival analysis revealed RB1 mutation (p = 0.0005) and TERT copy gain (p = 0.016) as independent predictors of poorer prognosis. MEN1 mutation was associated with poor prognosis in AC (p = 0.0045), whereas KMT2D mutation correlated with longer survival in SCLC (p = 0.0022). In conclusion, molecular profiling may complement histology for better diagnostic definition and prognostic stratification of LNETs. \ua9 2016 The Authors. The Journal of Pathology published by John Wiley &amp; Sons Ltd on behalf of Pathological Society of Great Britain and Ireland

    Combined Large Cell Neuroendocrine Carcinomas of the Lung: Integrative Molecular Analysis Identifies Subtypes with Potential Therapeutic Implications

    Get PDF
    Simple Summary In this manuscript, we offer an integrated molecular analysis of 44 combined large cell neuroendocrine carcinomas (CoLCNECs) in order to deepen the knowledge about these rare histotypes and to clarify their relationship with lung cancers. In the present state of research, molecular studies are still scant, consisting of small and heterogeneous cohorts, and the genomic landscape is poorly characterized. This study shows that CoLCNECs constitute a standalone group of neuroendocrine neoplasm, with three different molecular profiles, two of which overlap with pure LCNEC or adenocarcinoma. CoLCNECs can be considered an independent histologic category with specific genomic and transcriptomic features, different and therefore not comparable to other lung cancers. Indeed, in addition to a histological re-evaluation of lung cancer classification, our study may help to develop a new diagnostic approach for novel and personalized treatments in CoLCNECs. Background: Combined large cell neuroendocrine carcinoma (CoLCNEC) is given by the association of LCNEC with adeno or squamous or any non-neuroendocrine carcinoma. Molecular bases of CoLCNEC pathogenesis are scant and no standardized therapies are defined. Methods: 44 CoLCNECs: 26 with adenocarcinoma (CoADC), 7 with squamous cell carcinoma (CoSQC), 3 with small cell carcinoma (CoSCLC), 4 with atypical carcinoid (CoAC) and 4 napsin-A positive LCNEC (NapA+), were assessed for alterations in 409 genes and transcriptomic profiling of 20,815 genes. Results: Genes altered included TP53 (n = 30), RB1 (n = 14) and KRAS (n = 13). Targetable alterations included six KRAS G12C mutations and ALK-EML4 fusion gene. Comparison of CoLCNEC transcriptomes with 86 lung cancers of pure histology (8 AC, 19 ADC, 19 LCNEC, 11 SCLC and 29 SQC) identified CoLCNEC as a separate entity of neuroendocrine tumours with three different molecular profiles, two of which showed a non-neuroendocrine lineage. Hypomethylation, activation of MAPK signalling and association to immunotherapy signature specifically characterized each of three CoLCNEC molecular clusters. Prognostic stratification was also provided. Conclusions: CoLCNECs are an independent histologic category. Our findings support the extension of routine evaluation of KRAS mutations, fusion genes and immune-related markers to offer new perspectives in the therapeutic management of CoLCNEC
    corecore