abstracts

Table: 1879P			
Drugs	H-1703	Calu-1 IC50 (nM)	SK-Mes-1
		1000 (11101)	
PF-05212384	18	26	335
(PI3K/mTOR inhibitor)			
AZD-2014	145	217	215
(Dual mTORC1/C2			
inhibitor)			
Everolimus	Unable	Unable	Unable
(mTORC1 inhibitor)	determine	determine	determine
	IC50	IC50	IC50
MK-2206	Unable	Unable	Unable
(pan-Akt inhibitor)	determine	determine	determine
	IC50	IC50	IC50

Conclusions: Overall, the results of our study suggest the potential implication of PI3K/mTOR-Rictor pathway in SQLC oncogenesis, thus rendering it a promising target for a targeted approach. Among the mTOR components, RICTOR CNG seems to predict a higher sensitivity to PI3K/mTOR inhibition and might represent a potential biomarker to be explored as a stratification tool in clinical trials. Confirmatory RICTOR silencing experiments are currently ongoing.

Legal entity responsible for the study: Emilio Bria.

Funding: AIRC (Associazione Italiana per la Ricerca sul Cancro). Disclosure: All authors have declared no conflicts of interest.

1879P Potential role of RICTOR copy number gain (CNG) as a key biomarker of mTOR activity: A comprehensive preclinical analysis in squamous cell lung cancer (SQLC) models

<u>A. Gkountakos¹</u>, S. Pilotto², M. Simbolo¹, C. Vicentini¹, A. Mafficini¹, A. del Curatolo¹, A. Scarpa³, G. Tortora², V. Corbo¹, E. Bria⁴

¹Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy, ²Medical Oncology, University of Verona, AOUI Verona, Verona, Italy, ³ARC-Net Research Centre and Department of Diagnostics and Public Health - Section, AOU Integrata Verona "Borgo Roma", Verona, Italy, ⁴UOC Oncologia Medica, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy

Background: We previously performed a multi-step genomic study in almost 100 resected SQLC patients dichotomized according to the prognosis. Among the pathways with a biological impact on SQLC oncogenesis, PI3K/mTOR-Rictor emerged as a crucial axis [Pilotto WCLC 2016]. In order to explore the potentiality of mTOR inhibition, we present a set of in vitro experiments in RICTOR-aberrant SQLC preclinical models.

Methods: Next-generation sequencing (NGS), fluorescence in situ hybridization (FISH) and Western Blot were performed in 3 SQLC cell lines (H-1703, SK-Mes-1, Calu-1) for detecting CNG/protein profile of the PI3K/mTOR-Rictor components. The activity of PI3K/mTOR pathway targeted inhibitors in the SQLC cell lines was examined in short- (72 hours) and long-term (1 week) cell viability assays.

Results: NGS analysis revealed a different amount of RICTOR CNG among SQLC cell lines. FISH confirmed that H-1703 harbors the highest number of RICTOR copies (6) followed by SK-Mes-1 (4) and Calu-1 (3.5), suggesting polysomy of the short arm of chromosome 5 as the main mechanism of RICTOR gain. Although Rictor protein levels were similar among the cell lines, p-mTOR S2448 (active form of mTOR complexes) was higher in H-1703, with lower ICS0 values in short term treatment (Table). Similar findings were confirmed in long-term assays.