762 research outputs found

    Variations of the 10 um Silicate Features in the Actively Accreting T Tauri Stars: DG Tau and XZ Tau

    Full text link
    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 um silicate complex in the spectra of two sources - DG Tau and XZ Tau - undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolution coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.Comment: 6 pages, emulate apj format, accepted for publication in ApJ Letter

    Effects of Reduced Cyclic Stretch on Vascular Smooth Muscle Cell Function of Pig Carotids Perfused Ex Vivo

    Get PDF
    Background With advancing age arteries stiffen, reducing arterial compliance and leading to the development of systolic hypertension and to a substantial increase in pulse pressure. An augmented pulse pressure can be a predictor of the development of hypertension, which has been linked to several cardiovascular diseases including atherosclerosis, and to pathologies such as diabetes and renal dysfunction. In this study, we tested the hypothesis that reduced wall compliance induces pulse-pressure-mediated changes in arterial wall metabolism and remodeling. Methods Porcine carotid arteries were perfused for 24 h using an ex vivo arterial support system. Control arteries were exposed to a pulse shear stress (6 ± 3 dynes/cm2) combined with a pulse pressure of 80 ± 10 mm Hg, yielding a physiological cyclic stretch of 4-5%. A reduced compliance group was also studied, in which arteries were wrapped with an external band, thereby decreasing cyclic stretch to levels <1%. Results The experimentally reduced compliance caused a decreased contraction capacity induced by norepinephrine(NE), and this was associated with lower levels of α-smooth muscle cell-actin (α-SMC-actin) and desmin protein expressions. Arteries that were exposed to a reduced cyclic stretch exhibited a higher level of matrix metalloproteinase-2 (MMP-2) expression activity as well as an increase in Ki67 expression, thereby suggesting that matrix degradation and cellular proliferation had been initiated. Furthermore, the expression of plasminogen activator inhibitor-1 (PAI-1) in stiffened arteries was lower than in the control arteries. Conclusions These findings underline the importance of cyclic stretch in the maintenance of a differentiated and fully functional phenotype of vascular SMCs, as well as in the regulation of migratory properties, proliferation, and matrix turnove

    Dust growth in protoplanetary disks - a comprehensive experimental/theoretical approach

    Full text link
    More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and reliably modelled. In this article, the emergent collision model for protoplanetery dust aggregates (G\"uttler et al. 2010) as well as the numerical model for the evolution of dust aggregates in protoplanetary disks (Zsom et al. 2010) are reviewed. It turns out that, after a brief period of rapid collisional growth of fluffy dust aggregates to sizes of a few centimeters, the protoplanetary dust particles are subject to bouncing collisions, in which their porosity is considerably decreased. The model results also show that low-velocity fragmentation can reduce the final mass of the dust aggregates but that it does not trigger a new growth mode as discussed previously. According to the current stage of our model, the direct formation of kilometer-sized planetesimals by collisional sticking seems impossible so that collective effects, such as the streaming instability and the gravitational instability in dust-enhanced regions of the protoplanetary disk, are the best candidates for the processes leading to planetesimals.Comment: to appear in Research in Astronomy and Astrophysics (RAA

    Modeling Spitzer observations of VV Ser. I. The circumstellar disk of a UX Orionis star

    Get PDF
    We present mid-infrared Spitzer-IRS spectra of the well-known UX Orionis star VV Ser. We combine the Spitzer data with interferometric and spectroscopic data from the literature covering UV to submillimeter wavelengths. The full set of data are modeled by a two-dimensional axisymmetric Monte Carlo radiative transfer code. The model is used to test the prediction of (Dullemond et al. 2003) that disks around UX Orionis stars must have a self-shadowed shape, and that these disks are seen nearly edge-on, looking just over the edge of a puffed-up inner rim, formed roughly at the dust sublimation radius. We find that a single, relatively simple model is consistent with all the available observational constraints spanning 4 orders of magnitude in wavelength and spatial scales, providing strong support for this interpretation of UX Orionis stars. The grains in the upper layers of the puffed-up inner rim must be small (0.01-0.4 micron) to reproduce the colors (R_V ~ 3.6) of the extinction events, while the shape and strength of the mid-infrared silicate emission features indicate that grains in the outer disk (> 1-2 AU) are somewhat larger (0.3-3.0 micron). From the model fit, the location of the puffed-up inner rim is estimated to be at a dust temperature of 1500 K or at 0.7-0.8 AU for small grains. This is almost twice the rim radius estimated from near-infrared interferometry. A best fitting model for the inner rim in which large grains in the disk mid-plane reach to within 0.25 AU of the star, while small grains in the disk surface create a puffed-up inner rim at ~0.7-0.8 AU, is able to reproduce all the data, including the near-infrared visibilities. [Abstract abridged]Comment: 12 pages, accepted for publication in Ap

    Evidence for J and H-band excess in classical T Tauri stars and the implications for disk structure and estimated ages

    Full text link
    We argue that classical T Tauri stars (cTTs) possess significant non- photospheric excess in the J and H bands. We first show that normalizing the spectral energy distributions (SEDs) of cTTs to the J-band leads to a poor fit of the optical fluxes, while normalizing the SEDs to the Ic-band produces a better fit to the optical bands and in many cases reveals the presence of a considerable excess at J and H. NIR spectroscopic veiling measurements from the literature support this result. We find that J and H-band excesses correlate well with the K-band excess, and that the J-K and H-K colors of the excess emission are consistent with that of a black body at the dust sublimation temperature (~ 1500-2000 K). We propose that this near-IR excess originates at a hot inner rim, analogous to those suggested to explain the near-IR bump in the SEDs of Herbig Ae/Be stars. To test our hypothesis, we use the model presented by Dullemond et al. (2001) to fit the photometry data between 0.5 um and 24 um of 10 cTTs associated with the Chamaeleon II molecular cloud. The models that best fit the data are those where the inner radius of the disk is larger than expected for a rim in thermal equilibrium with the photospheric radiation field alone. In particular, we find that large inner rims are necessary to account for the mid infrared fluxes (3.6-8.0 um) obtained by the Spitzer Space Telescope. Finally, we argue that deriving the stellar luminosities of cTTs by making bolometric corrections to the J-band fluxes systematically overestimates these luminosities. The overestimated luminosities translate into underestimated ages when the stars are placed in the H-R diagram. Thus, the results presented herein have important implications for the dissipation timescale of inner accretion disks.Comment: 45 pages, 13 figure

    Gelsolin superfamily proteins: key regulators of cellular functions

    Get PDF
    Abstract.: Cytoskeletal rearrangement occurs in a variety of cellular processes and involves a wide spectrum of proteins. Among these, the gelsolin superfamily proteins control actin organization by severing filaments, capping filament ends and nucleating actin assembly [1]. Gelsolin is the founding member of this family, which now contains at least another six members: villin, adseverin, capG, advillin, supervillin and flightless I. In addition to their respective role in actin filament remodeling, these proteins have some specific and apparently non-overlapping particular roles in several cellular processes, including cell motility, control of apoptosis and regulation of phagocytosis (summarized in table 1). Evidence suggests that proteins belonging to the gelsolin superfamily may be involved in other processes, including gene expression regulation. This review will focus on some of the known functions of the gelsolin superfamily proteins, thus providing a basis for reflection on other possible and as yet incompletely understood roles for these protein

    On the Evolution of Dust Mineralogy, From Protoplanetary Disks to Planetary Systems

    Get PDF
    Mineralogical studies of silicate features emitted by dust grains in protoplanetary disks and Solar System bodies can shed light on the progress of planet formation. The significant fraction of crystalline material in comets, chondritic meteorites and interplanetary dust particles indicates a modification of the almost completely amorphous ISM dust from which they formed. The production of crystalline silicates thus must happen in protoplanetary disks, where dust evolves to build planets and planetesimals. Different scenarios have been proposed, but it is still unclear how and when this happens. This paper presents dust grain mineralogy of a complete sample of protoplanetary disks in the young Serpens cluster. These results are compared to those in the young Taurus region and to sources that have retained their protoplanetary disks in the older Upper Scorpius and Eta Chamaeleontis stellar clusters, using the same analysis technique for all samples. This comparison allows an investigation of the grain mineralogy evolution with time for a total sample of 139 disks. The mean cluster age and disk fraction are used as indicators of the evolutionary stage of the different populations. Our results show that the disks in the different regions have similar distributions of mean grain sizes and crystallinity fractions (~10-20%) despite the spread in mean ages. Furthermore, there is no evidence of preferential grain sizes for any given disk geometry, nor for the mean cluster crystallinity fraction to increase with mean age in the 1-8 Myr range. The main implication is that a modest level of crystallinity is established in the disk surface early on (< 1 Myr), reaching a equilibrium that is independent of what may be happening in the disk midplane. These results are discussed in the context of planet formation, in comparison with mineralogical results from small bodies in our Solar System. [Abridged]Comment: Accepted for publication in the Astrophysical Journa

    Complex Organic Materials in the HR 4796A Disk?

    Get PDF
    The red spectral shape of the visible to near infrared reflectance spectrum of the sharply-edged ring-like disk around the young main sequence star HR 4796A was recently interpreted as the presence of tholin-like complex organic materials which are seen in the atmosphere and surface of Titan and the surfaces of icy bodies in the solar system. However, we show in this Letter that porous grains comprised of common cosmic dust species (amorphous silicate, amorphous carbon, and water ice) also closely reproduce the observed reflectance spectrum, suggesting that the presence of complex organic materials in the HR 4796 disk is still not definitive.Comment: 6 pages, 3 figures; To be published in The Astrophysical Journal Letter

    Dust retention in protoplanetary disks

    Full text link
    Context: Protoplanetary disks are observed to remain dust-rich for up to several million years. Theoretical modeling, on the other hand, raises several questions. Firstly, dust coagulation occurs so rapidly, that if the small dust grains are not replenished by collisional fragmentation of dust aggregates, most disks should be observed to be dust poor, which is not the case. Secondly, if dust aggregates grow to sizes of the order of centimeters to meters, they drift so fast inwards, that they are quickly lost. Aims: We attempt to verify if collisional fragmentation of dust aggregates is effective enough to keep disks 'dusty' by replenishing the population of small grains and by preventing excessive radial drift. Methods: With a new and sophisticated implicitly integrated coagulation and fragmentation modeling code, we solve the combined problem of coagulation, fragmentation, turbulent mixing and radial drift and at the same time solve for the 1-D viscous gas disk evolution. Results: We find that for a critical collision velocity of 1 m/s, as suggested by laboratory experiments, the fragmentation is so effective, that at all times the dust is in the form of relatively small particles. This means that radial drift is small and that large amounts of small dust particles remain present for a few million years, as observed. For a critical velocity of 10 m/s, we find that particles grow about two orders of magnitude larger, which leads again to significant dust loss since larger particles are more strongly affected by radial drift.Comment: Letter accepted 3 July 2009, included comments of language edito

    Protostellar holes: Spitzer Space Telescope observations of the protostellar binary IRAS16293-2422

    Full text link
    Mid-infrared (23-35 micron) emission from the deeply embedded "Class 0" protostar IRAS16293-2422 is detected with the Spitzer Space Telescope infrared spectrograph. A detailed radiative transfer model reproducing the full spectral energy distribution (SED) from 23 micron to 1.3 mm requires a large inner cavity of radius 600 AU in the envelope to avoid quenching the emission from the central sources. This is consistent with a previous suggestion based on high angular resolution millimeter interferometric data. An alternative interpretation using a 2D model of the envelope with an outflow cavity can reproduce the SED but not the interferometer visibilities. The cavity size is comparable to the centrifugal radius of the envelope and therefore appears to be a natural consequence of the rotation of the protostellar core, which has also caused the fragmentation leading to the central protostellar binary. With a large cavity such as required by the data, the average temperature at a given radius does not increase above 60-80 K and although hot spots with higher temperatures may be present close to each protostar, these constitute a small fraction of the material in the inner envelope. The proposed cavity will also have consequences for the interpretation of molecular line data, especially of complex species probing high temperatures in the inner regions of the envelope.Comment: Accepted for publication in ApJ Letter
    corecore