98 research outputs found

    Avalanche defences for Flateyri, Iceland. From hazard evaluation to construction of defences.

    Get PDF
    The village of Flateyri was hit by two major avalanches in 1995, with the latter one killing 20 of the 45 people caught in it. These, together with the catastrophic avalanche in the nearby Súôavík in January the same year, initiated a complete review of all government actions and regulations regarding avalanche risk and avalanche defences in Iceland. The government set a long term goal for the acceptable risk to people living in avalanche prone areas and increased funding for the construction of avalanche defences. The avalanche situation in Flateyri is quite serious and the risk the inhabitants live with is very high. The town is threatened by avalanches from two gullies, Innra-Bæjargil in the north-west and Skollahvilft in the north-east, with several records of avalanches reaching well into the present residential area. To fulfil the safety requirements, an appraisal study was carried out and a proposal made for avalanche defences for the community, consisting of two earthfill deflecting dams and an earthfill catching dam. The proposal was accepted by the local authorities and the Icelandic government in the spring of 1996, design work was carried out in that summer and construction work started in September 1996. The construction of the dams is now close to completion, two years after the accident

    The avalanche situation in Neskaupstadur, Iceland : A preliminary defensive plan

    Get PDF
    The avalanche situation in the town of Neskaupstaôur is rather unique and in many respects more difficult than in any other place in Iceland. The avalanche risk is high in a large portion of the 2,7 km long residential area, with similar snow accumulation conditions throughout the entire area. Additionally, conditions for the construction of avalanche defences are rather difficult. The avalanche starting zones are extensive and many of these have difficult geological conditions. The uppermost houses are located close to the mountain, with limited space to construct avalanche defences above them, especially in the western part of the town. After the avalanche accidents in Súàavík and Flateyri in 1995 the Icelandic government has set a long term goal for the acceptable risk to people living in avalanche prone areas. To fulfil this goal, a risk analysis has to be made in connection with avalanche defence planning. The risk analysis for Neskaupstaôur indicates that the risk level is far above the acceptable limits in certain parts of the town. To improve the situation, a preliminary protection plan has been set up for the whole town. The plan is based on a combination of supporting structures, deflecting dams, catching dams and breaking mounds

    Multiple genetic loci for bone mineral density and fractures

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBACKGROUND: Bone mineral density influences the risk of osteoporosis later in life and is useful in the evaluation of the risk of fracture. We aimed to identify sequence variants associated with bone mineral density and fracture. METHODS: We performed a quantitative trait analysis of data from 5861 Icelandic subjects (the discovery set), testing for an association between 301,019 single-nucleotide polymorphisms (SNPs) and bone mineral density of the hip and lumbar spine. We then tested for an association between 74 SNPs (most of which were implicated in the discovery set) at 32 loci in replication sets of Icelandic, Danish, and Australian subjects (4165, 2269, and 1491 subjects, respectively). RESULTS: Sequence variants in five genomic regions were significantly associated with bone mineral density in the discovery set and were confirmed in the replication sets (combined P values, 1.2x10(-7) to 2.0x10(-21)). Three regions are close to or within genes previously shown to be important to the biologic characteristics of bone: the receptor activator of nuclear factor-kappaB ligand gene (RANKL) (chromosomal location, 13q14), the osteoprotegerin gene (OPG) (8q24), and the estrogen receptor 1 gene (ESR1) (6q25). The two other regions are close to the zinc finger and BTB domain containing 40 gene (ZBTB40) (1p36) and the major histocompatibility complex region (6p21). The 1p36, 8q24, and 6p21 loci were also associated with osteoporotic fractures, as were loci at 18q21, close to the receptor activator of the nuclear factor-kappaB gene (RANK), and loci at 2p16 and 11p11. CONCLUSIONS: We have discovered common sequence variants that are consistently associated with bone mineral density and with low-trauma fractures in three populations of European descent. Although these variants alone are not clinically useful in the prediction of risk to the individual person, they provide insight into the biochemical pathways underlying osteoporosis

    A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE

    Get PDF
    Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (Pmeta=0.00010 and Pmeta=0.00040, respectively). STAT1 was also associated with SLE in this cohort (Pmeta=3.3 × 10−5), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis

    A Systems Biology Approach to Drug Targets in Pseudomonas aeruginosa Biofilm

    Get PDF
    Antibiotic resistance is an increasing problem in the health care system and we are in a constant race with evolving bacteria. Biofilm-associated growth is thought to play a key role in bacterial adaptability and antibiotic resistance. We employed a systems biology approach to identify candidate drug targets for biofilm-associated bacteria by imitating specific microenvironments found in microbial communities associated with biofilm formation. A previously reconstructed metabolic model of Pseudomonas aeruginosa (PA) was used to study the effect of gene deletion on bacterial growth in planktonic and biofilm-like environmental conditions. A set of 26 genes essential in both conditions was identified. Moreover, these genes have no homology with any human gene. While none of these genes were essential in only one of the conditions, we found condition-dependent genes, which could be used to slow growth specifically in biofilm-associated PA. Furthermore, we performed a double gene deletion study and obtained 17 combinations consisting of 21 different genes, which were conditionally essential. While most of the difference in double essential gene sets could be explained by different medium composition found in biofilm-like and planktonic conditions, we observed a clear effect of changes in oxygen availability on the growth performance. Eight gene pairs were found to be synthetic lethal in oxygen-limited conditions. These gene sets may serve as novel metabolic drug targets to combat particularly biofilm-associated PA. Taken together, this study demonstrates that metabolic modeling of human pathogens can be used to identify oxygen-sensitive drug targets and thus, that this systems biology approach represents a powerful tool to identify novel candidate antibiotic targets

    Collaborative Meta-analysis: Associations of 150 Candidate Genes With Osteoporosis and Osteoporotic Fracture

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBACKGROUND: Osteoporosis is a highly heritable trait. Many candidate genes have been proposed as being involved in regulating bone mineral density (BMD). Few of these findings have been replicated in independent studies. OBJECTIVE: To assess the relationship between BMD and fracture and all common single-nucleotide polymorphisms (SNPs) in previously proposed osteoporosis candidate genes. DESIGN: Large-scale meta-analysis of genome-wide association data. SETTING: 5 international, multicenter, population-based studies. PARTICIPANTS: Data on BMD were obtained from 19 195 participants (14 277 women) from 5 populations of European origin. Data on fracture were obtained from a prospective cohort (n = 5974) from the Netherlands. MEASUREMENTS: Systematic literature review using the Human Genome Epidemiology Navigator identified autosomal genes previously evaluated for association with osteoporosis. We explored the common SNPs arising from the haplotype map of the human genome (HapMap) across all these genes. BMD at the femoral neck and lumbar spine was measured by dual-energy x-ray absorptiometry. Fractures were defined as clinically apparent, site-specific, validated nonvertebral and vertebral low-energy fractures. RESULTS: 150 candidate genes were identified and 36 016 SNPs in these loci were assessed. SNPs from 9 gene loci (ESR1, LRP4, ITGA1, LRP5, SOST, SPP1, TNFRSF11A, TNFRSF11B, and TNFSF11) were associated with BMD at either site. For most genes, no SNP was statistically significant. For statistically significant SNPs (n = 241), effect sizes ranged from 0.04 to 0.18 SD per allele. SNPs from the LRP5, SOST, SPP1, and TNFRSF11A loci were significantly associated with fracture risk; odds ratios ranged from 1.13 to 1.43 per allele. These effects on fracture were partially independent of BMD at SPP1 and SOST. Limitation: Only common polymorphisms in linkage disequilibrium with SNPs in HapMap could be assessed, and previously reported associations for SNPs in some candidate genes could not be excluded. CONCLUSION: In this large-scale collaborative genome-wide meta-analysis, 9 of 150 candidate genes were associated with regulation of BMD, 4 of which also significantly affected risk for fracture. However, most candidate genes had no consistent association with BMD

    Markers of Dysglycaemia and Risk of Coronary Heart Disease in People without Diabetes: Reykjavik Prospective Study and Systematic Review

    Get PDF
    BACKGROUND: Associations between circulating markers of dysglycaemia and coronary heart disease (CHD) risk in people without diabetes have not been reliably characterised. We report new data from a prospective study and a systematic review to help quantify these associations. METHODS AND FINDINGS: Fasting and post-load glucose levels were measured in 18,569 participants in the population-based Reykjavik study, yielding 4,664 incident CHD outcomes during 23.5 y of mean follow-up. In people with no known history of diabetes at the baseline survey, the hazard ratio (HR) for CHD, adjusted for several conventional risk factors, was 2.37 (95% CI 1.79-3.14) in individuals with fasting glucose > or = 7.0 mmol/l compared to those or = 7 mmol/l at baseline were excluded, relative risks for CHD, adjusted for several conventional risk factors, were: 1.06 (1.00-1.12) per 1 mmol/l higher fasting glucose (23 cohorts, 10,808 cases, 255,171 participants); 1.05 (1.03-1.07) per 1 mmol/l higher post-load glucose (15 cohorts, 12,652 cases, 102,382 participants); and 1.20 (1.10-1.31) per 1% higher HbA(1c) (9 cohorts, 1639 cases, 49,099 participants). CONCLUSIONS: In the Reykjavik Study and a meta-analysis of other Western prospective studies, fasting and post-load glucose levels were modestly associated with CHD risk in people without diabetes. The meta-analysis suggested a somewhat stronger association between HbA(1c) levels and CHD risk

    Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry

    Get PDF
    Hip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS studies in adults to identify genetic variants that are associated with proximal femur geometry phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association analyses were performed with ∼2.5 million polymorphisms under an additive model adjusted for age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted genomewide significance [GWS], threshold p ≤ 2.6 × 10 –8 ) were performed in seven additional cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with any-type fracture (p = 7.5 × 10 –5 ). We used bone transcriptome data and discovered several significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 (intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found associations between several genes and hip geometry measures that explained 12% to 22% of heritability at different sites. The results provide a defined set of genes related to biological pathways relevant to BMD and etiology of bone fragility

    Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects.

    Get PDF
    Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course
    • …
    corecore