29 research outputs found

    CD34 marks angiogenic tip cells in human vascular endothelial cell cultures

    Get PDF
    The functional shift of quiescent endothelial cells into tip cells that migrate and stalk cells that proliferate is a key event during sprouting angiogenesis. We previously showed that the sialomucin CD34 is expressed in a small subset of cultured endothelial cells and that these cells extend filopodia: a hallmark of tip cells in vivo. In the present study, we characterized endothelial cells expressing CD34 in endothelial monolayers in vitro. We found that CD34-positive human umbilical vein endothelial cells show low proliferation activity and increased mRNA expression of all known tip cell markers, as compared to CD34-negative cells. Genome-wide mRNA profiling analysis of CD34-positive endothelial cells demonstrated enrichment for biological functions related to angiogenesis and migration, whereas CD34-negative cells were enriched for functions related to proliferation. In addition, we found an increase or decrease of CD34-positive cells in vitro upon exposure to stimuli that enhance or limit the number of tip cells in vivo, respectively. Our findings suggest cells with virtually all known properties of tip cells are present in vascular endothelial cell cultures and that they can be isolated based on expression of CD34. This novel strategy may open alternative avenues for future studies of molecular processes and functions in tip cells in angiogenesis

    A novel extracellular role for tissue transglutaminase in matrix-bound VEGF-mediated angiogenesis

    Get PDF
    The importance of tissue transglutaminase (TG2) in angiogenesis is unclear and contradictory. Here we show that inhibition of extracellular TG2 protein crosslinking or downregulation of TG2 expression leads to inhibition of angiogenesis in cell culture, the aorta ring assay and in vivo models. In a human umbilical vein endothelial cell (HUVEC) co-culture model, inhibition of extracellular TG2 activity can halt the progression of angiogenesis, even when introduced after tubule formation has commenced and after addition of excess vascular endothelial growth factor (VEGF). In both cases, this leads to a significant reduction in tubule branching. Knockdown of TG2 by short hairpin (shRNA) results in inhibition of HUVEC migration and tubule formation, which can be restored by add back of wt TG2, but not by the transamidation-defective but GTP-binding mutant W241A. TG2 inhibition results in inhibition of fibronectin deposition in HUVEC monocultures with a parallel reduction in matrix-bound VEGFA, leading to a reduction in phosphorylated VEGF receptor 2 (VEGFR2) at Tyr1214 and its downstream effectors Akt and ERK1/2, and importantly its association with b1 integrin. We propose a mechanism for the involvement of matrix-bound VEGFA in angiogenesis that is dependent on extracellular TG2-related activity

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Estimating the impact of a cancer diagnosis on life expectancy by socio-economic group for a range of cancer types in England.

    No full text
    BACKGROUND: Differences in cancer survival exist across socio-economic groups for many cancer types. Standard metrics fail to show the overall impact for patients and the population. METHODS: The available data consist of a population of ∼2.5 million patients and include all patients recorded as being diagnosed with melanoma, prostate, bladder, breast, colon, rectum, lung, ovarian and stomach cancers in England between 1998 and 2013. We estimated the average loss in expectation of life per patient in years and the proportion of life lost for a range of cancer types, separately by deprivation group. In addition, estimates for the total number of years lost due to each cancer were also obtained. RESULTS: Lung and stomach cancers result in the highest overall loss for males and females in all deprivation groups in terms of both absolute life years lost and loss as a proportion of expected life remaining. Female lung cancer patients in the least- and most-deprived group lose 14.4 and 13.8 years on average, respectively, that is translated as 86.1% and 87.3% of their average expected life years remaining. Melanoma, prostate and breast cancers have the lowest overall loss. On the basis of the number of patients diagnosed in 2013, lung cancer results in the most life years lost in total followed by breast cancer. Melanoma and bladder cancer account for the lowest total life years lost. CONCLUSIONS: There are wide differences in the impact of cancer on life expectancy across deprivation groups, and for most cancers the most affluent lose less years
    corecore