96 research outputs found
One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
FORMATION MECHANISM OF IONIC LIQUID-RECONSTITUTED CELLULOSE HYDROGELS AND THEIR APPLICATION IN GEL ELECTROPHORESIS
Natural Gas Accumulation Characteristics in the Linxing Area, Ordos Basin, NW China: Revealed from the Integrated Study of Fluid Inclusions and Basin Modeling
The Linxing area is located in the north of the eastern margin of the Ordos Basin, which has great resource potential for tight gas. In this paper, fluid inclusion analysis and basin modeling are the main means to clarify the gas accumulation mechanism of the Upper Paleozoic in the Linxing area. Petrographic analysis shows that fluid inclusions can be classified into 5 types: aqueous inclusions, hydrocarbon-bearing aqueous inclusions, hydrocarbon inclusions, crystal-bearing aqueous inclusions, and aqueous-carbonic inclusions. According to the statistical analysis of homogenization temperature and salinity of fluid inclusions, combined with the burial-thermal evolution, the study area was divided into 3 areas: the inner-magma baking area, the middle-anomal thermal area, and the outer-normal thermal area. The gas accumulation characteristics are differences among the 3 areas, the closer to Zijinshan magmatic pluton, the earlier gas accumulation period; and the vertical gas accumulation in the inner-magma baking area and the middle-anomal thermal area was not a slow and gradual process from bottom to top. The period from the Middle Jurassic to the Early Cretaceous is the key period for rapid pressure accumulation in the Upper Paleozoic reservoirs, which is consistent with the period of natural gas accumulation. The area near the Zijinshan magmatic pluton was the high fluid potential area during the gas accumulation period, which indicates that natural gas and other fluids migrated from Zijinshan magmatic pluton to the surrounding area. It is concluded that in the Linxing area, the Zijinshan magmatic pluton had a significant impact on natural gas accumulation, and the natural gas accumulation model under the control of magmatic thermal-tectonic effect was proposed
Numerical study on effects of the cofferdam area in liquefied natural gas storage tank on the leakage and diffusion characteristics of natural gas
The leakage and diffusion characteristics of natural gas were investigated in the condition of the leakage of liquefied natural gas (LNG) in the storage tank. Fluent was adopted to simulate the process in a series of three-dimension unsteady state calculations. The effects of different heights of the cofferdam (1.0 m, 2.0 m and 3.0 m), wind directions, ambient temperature, leakage location, leakage volume on the diffusion process of natural gas were investigated. The diffusion characteristics of the natural gas clouds over cofferdam were found. Under windless condition, when the gas clouds met, the gas clouds rose due to the collision, which made them easier to cross the cofferdam and spread out. The higher the ambient temperature was, the higher the gas concentration around the cofferdam was, and the smaller the gas concentration difference was. When the leakage occurred, the higher cofferdam was more beneficial to delay the outward diffusion of gas clouds. However, when the leakage stopped, the higher cofferdam went against the dissipation of gas clouds. Under windy condition, the time to form stable leakage flow field was faster than that of windless, and the lower cofferdam further reduced this time. Therefore, considering the effect of barrier and dissipation, it was suggested that the rational height of cofferdam should be designed in the range of 1.0m to 2.0m. In case of emergency, the leakage of gas should be deduced reasonably by combining the measurement of gas concentration with the rolling of gas clouds. When windless, the leakage area should be entered between the overflows of gas clouds. (C) 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved
Natural Gas Accumulation Characteristics in the Linxing Area, Ordos Basin, NW China: Revealed from the Integrated Study of Fluid Inclusions and Basin Modeling
The Linxing area is located in the north of the eastern margin of the Ordos Basin, which has great resource potential for tight gas. In this paper, fluid inclusion analysis and basin modeling are the main means to clarify the gas accumulation mechanism of the Upper Paleozoic in the Linxing area. Petrographic analysis shows that fluid inclusions can be classified into 5 types: aqueous inclusions, hydrocarbon-bearing aqueous inclusions, hydrocarbon inclusions, crystal-bearing aqueous inclusions, and aqueous-carbonic inclusions. According to the statistical analysis of homogenization temperature and salinity of fluid inclusions, combined with the burial-thermal evolution, the study area was divided into 3 areas: the inner-magma baking area, the middle-anomal thermal area, and the outer-normal thermal area. The gas accumulation characteristics are differences among the 3 areas, the closer to Zijinshan magmatic pluton, the earlier gas accumulation period; and the vertical gas accumulation in the inner-magma baking area and the middle-anomal thermal area was not a slow and gradual process from bottom to top. The period from the Middle Jurassic to the Early Cretaceous is the key period for rapid pressure accumulation in the Upper Paleozoic reservoirs, which is consistent with the period of natural gas accumulation. The area near the Zijinshan magmatic pluton was the high fluid potential area during the gas accumulation period, which indicates that natural gas and other fluids migrated from Zijinshan magmatic pluton to the surrounding area. It is concluded that in the Linxing area, the Zijinshan magmatic pluton had a significant impact on natural gas accumulation, and the natural gas accumulation model under the control of magmatic thermal-tectonic effect was proposed.</jats:p
Numerical study on effects of the cofferdam area in liquefied natural gas storage tank on the leakage and diffusion characteristics of natural gas
- …
