93 research outputs found

    DArTseq-based analysis of genomic relationships among species of tribe Triticeae

    Get PDF
    Precise utilization of wild genetic resources to improve the resistance of their cultivated relatives to environmental growth limiting factors, such as salinity stress and diseases, requires a clear understanding of their genomic relationships. Although seriously criticized, analyzing these relationships in tribe Triticeae has largely been based on meiotic chromosome pairing in hybrids of wide crosses, a specialized and labourious strategy. In this study, DArTseq, an efficient genotyping-by-sequencing platform, was applied to analyze the genomes of 34 Triticeae species. We reconstructed the phylogenetic relationships among diploid and polyploid Aegilops and Triticum species, including hexaploid wheat. Tentatively, we have identified the diploid genomes that are likely to have been involved in the evolution of five polyploid species of Aegilops, which have remained unresolved for decades. Explanations which cast light on the progenitor of the A genomes and the complex genomic status of the B/G genomes of polyploid Triticum species in the Emmer and Timopheevi lineages of wheat have also been provided. This study has, therefore, demonstrated that DArTseq genotyping can be effectively applied to analyze the genomes of plants, especially where their genome sequence information are not available

    Discovery of High-Confidence Single Nucleotide Polymorphisms from Large-Scale De Novo Analysis of Leaf Transcripts of Aegilops tauschii, A Wild Wheat Progenitor

    Get PDF
    Construction of high-resolution genetic maps is important for genetic and genomic research, as well as for molecular breeding. Single nucleotide polymorphisms (SNPs) are the,predominant class of genetic variation and can be used as molecular markers. Aegilops tauschii, the D-genome donor of common wheat, is considered a valuable genetic resource for wheat improvement. Our previous study implied that Ae. tauschii accessions can be genealogically divided into two major lineages. In this study, the transcriptome of two Ae. tauschii accessions from each lineage, lineage 1 (L1) and 2 (L2), was sequenced, yielding 9435 SNPs and 739 insertion/deletion polymorphisms (indels) after de novo assembly of the reads. Based on 36 contig sequences, 31 SNPs and six indels were validated on 20 diverse Ae. tauschii accessions. Because almost all of the SNP markers were polymorphic between L1 and L2, and the D-genome donor of common wheat is presumed to belong to L2, these markers are available for D-genome typing in crosses between common wheat varieties and L1-derived synthetic wheat. Due to the conserved synteny between wheat and barley chromosomes, the high-density expressed sequence tag barley map and the hypothetical gene order in barley can be applied to develop markers on target chromosomal regions in wheat

    Development of a high-throughput field phenotyping rover optimized for size-limited breeding fields as open-source hardware

    Full text link
    Phenotyping is a critical process in plant breeding, especially when there is an increasing demand for streamlining a selection process in a breeding program. Since manual phenotyping has limited efficiency, highthroughput phenotyping methods are recently popularized owing to progress in sensor and image processing technologies. However, in a size-limited breeding field, which is common in Japan and other Asian countries, it is challenging to introduce large machinery in the field or fly unmanned aerial vehicles over the field. In this study, we developed a ground-based high-throughput field phenotyping rover that could be easily introduced to a field regardless of the scale and location of the field even without special facilities. We also made the field rover open-source hardware, making its system available to public for easy modification, so that anyone can build one for their own use at a low cost. The trial run of the field rover revealed that it allowed the collection of detailed remote-sensing images of plants and quantitative analyses based on the images. The results suggest that the field rover developed in this study could allow efficient phenotyping of plants especially in a small breeding field

    Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome

    Get PDF
    The application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452 528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes. Nucleotide sequences of seven wheat genes have been determined here for the first time. Nine genes have an exon–intron structure. Gene amplification responsible for the production of multicopy mitochondrial genes, in general, is species-specific, suggesting the recent origin of these genes. About 16, 17, 15, 3.0 and 0.2% of wheat mitochondrial DNA (mtDNA) may be of genic (including introns), open reading frame, repetitive sequence, chloroplast and retro-element origin, respectively. The gene order of the wheat mitochondrial gene map shows little synteny to the rice and maize maps, indicative that thorough gene shuffling occurred during speciation. Almost all unique mtDNA sequences of wheat, as compared with rice and maize mtDNAs, are redundant DNA. Features of the gene-based strategy are discussed, and a mechanistic model of mitochondrial gene amplification is proposed

    Next-generation survey sequencing and the molecular organization of wheat chromosome 6B.

    Get PDF
    コムギのゲノム配列の概要解読に成功 -コムギの新品種開発の加速化に期待-. 京都大学プレスリリース. 2014-07-24.Common wheat (Triticum aestivum L.) is one of the most important cereals in the world. To improve wheat quality and productivity, the genomic sequence of wheat must be determined. The large genome size (∼17 Gb/1 C) and the hexaploid status of wheat have hampered the genome sequencing of wheat. However, flow sorting of individual chromosomes has allowed us to purify and separately shotgun-sequence a pair of telocentric chromosomes. Here, we describe a result from the survey sequencing of wheat chromosome 6B (914 Mb/1 C) using massively parallel 454 pyrosequencing. From the 4.94 and 5.51 Gb shotgun sequence data from the two chromosome arms of 6BS and 6BL, 235 and 273 Mb sequences were assembled to cover ∼55.6 and 54.9% of the total genomic regions, respectively. Repetitive sequences composed 77 and 86% of the assembled sequences on 6BS and 6BL, respectively. Within the assembled sequences, we predicted a total of 4798 non-repetitive gene loci with the evidence of expression from the wheat transcriptome data. The numbers and chromosomal distribution patterns of the genes for tRNAs and microRNAs in wheat 6B were investigated, and the results suggested a significant involvement of DNA transposon diffusion in the evolution of these non-protein-coding RNA genes. A comparative analysis of the genomic sequences of wheat 6B and monocot plants clearly indicated the evolutionary conservation of gene contents

    Global Wheat Head Detection 2021: an improved dataset for benchmarking wheat head detection methods

    Get PDF
    The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience, a few avenues for improvements have been identified regarding data size, head diversity, and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and complemented by adding 1722 images from 5 additional countries, allowing for 81,553 additional wheat heads. We now release in 2021 a new version of the Global Wheat Head Detection dataset, which is bigger, more diverse, and less noisy than the GWHD_2020 version

    Shifting the limits in wheat research and breeding using a fully annotated reference genome

    Get PDF
    Introduction: Wheat (Triticum aestivum L.) is the most widely cultivated crop on Earth, contributing about a fifth of the total calories consumed by humans. Consequently, wheat yields and production affect the global economy, and failed harvests can lead to social unrest. Breeders continuously strive to develop improved varieties by fine-tuning genetically complex yield and end-use quality parameters while maintaining stable yields and adapting the crop to regionally specific biotic and abiotic stresses. Rationale: Breeding efforts are limited by insufficient knowledge and understanding of wheat biology and the molecular basis of central agronomic traits. To meet the demands of human population growth, there is an urgent need for wheat research and breeding to accelerate genetic gain as well as to increase and protect wheat yield and quality traits. In other plant and animal species, access to a fully annotated and ordered genome sequence, including regulatory sequences and genome-diversity information, has promoted the development of systematic and more time-efficient approaches for the selection and understanding of important traits. Wheat has lagged behind, primarily owing to the challenges of assembling a genome that is more than five times as large as the human genome, polyploid, and complex, containing more than 85% repetitive DNA. To provide a foundation for improvement through molecular breeding, in 2005, the International Wheat Genome Sequencing Consortium set out to deliver a high-quality annotated reference genome sequence of bread wheat. Results: An annotated reference sequence representing the hexaploid bread wheat genome in the form of 21 chromosome-like sequence assemblies has now been delivered, giving access to 107,891 high-confidence genes, including their genomic context of regulatory sequences. This assembly enabled the discovery of tissue- and developmental stage–related gene coexpression networks using a transcriptome atlas representing all stages of wheat development. The dynamics of change in complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. Aspects of the future value of the annotated assembly for molecular breeding and research were exemplarily illustrated by resolving the genetic basis of a quantitative trait locus conferring resistance to abiotic stress and insect damage as well as by serving as the basis for genome editing of the flowering-time trait. Conclusion: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding. Importantly, the bioinformatics capacity developed for model-organism genomes will facilitate a better understanding of the wheat genome as a result of the high-quality chromosome-based genome assembly. By necessity, breeders work with the genome at the whole chromosome level, as each new cross involves the modification of genome-wide gene networks that control the expression of complex traits such as yield. With the annotated and ordered reference genome sequence in place, researchers and breeders can now easily access sequence-level information to precisely define the necessary changes in the genomes for breeding programs. This will be realized through the implementation of new DNA marker platforms and targeted breeding technologies, including genome editing
    corecore