26 research outputs found

    Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Twin-arginine translocation (Tat) system serves to translocate folded proteins, including periplasmic enzymes that bind redox cofactors in bacteria. The Tat system is also a determinant of virulence in some pathogenic bacteria, related to pleiotropic effects including growth, motility, and the secretion of some virulent factors. The contribution of the Tat pathway to <it>Vibrio cholerae </it>has not been explored. Here we investigated the functionality of the Tat system in <it>V. cholerae</it>, the etiologic agent of cholera.</p> <p>Results</p> <p>In <it>V. cholerae</it>, the <it>tatABC </it>genes function in the translocation of TMAO reductase. Deletion of the <it>tatABC </it>genes led to a significant decrease in biofilm formation, the ability to attach to HT-29 cells, and the ability to colonize suckling mouse intestines. In addition, we observed a reduction in the output of cholera toxin, which may be due to the decreased transcription level of the toxin gene in <it>tatABC </it>mutants, suggesting an indirect effect of the mutation on toxin production. No obvious differences in flagellum biosynthesis and motility were found between the <it>tatABC </it>mutant and the parental strain, showing a variable effect of Tat in different bacteria.</p> <p>Conclusion</p> <p>The Tat system contributes to the survival of <it>V. cholerae </it>in the environment and <it>in vivo</it>, and it may be associated with its virulence.</p

    Whole Genome PCR Scanning Reveals the Syntenic Genome Structure of Toxigenic Vibrio cholerae Strains in the O1/O139 Population

    Get PDF
    Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes

    Bees in China: A Brief Cultural History

    Get PDF

    Proteins involved in difference of sorbitol fermentation rates of the toxigenic and nontoxigenic <it>Vibrio cholerae </it>El Tor strains revealed by comparative proteome analysis

    No full text
    Abstract Background The nontoxigenic V. cholerae El Tor strains ferment sorbitol faster than the toxigenic strains, hence fast-fermenting and slow-fermenting strains are defined by sorbitol fermentation test. This test has been used for more than 40 years in cholera surveillance and strain analysis in China. Understanding of the mechanisms of sorbitol metabolism of the toxigenic and nontoxigenic strains may help to explore the genome and metabolism divergence in these strains. Here we used comparative proteomic analysis to find the proteins which may be involved in such metabolic difference. Results We found the production of formate and lactic acid in the sorbitol fermentation medium of the nontoxigenic strain was earlier than of the toxigenic strain. We compared the protein expression profiles of the toxigenic strain N16961 and nontoxigenic strain JS32 cultured in sorbitol fermentation medium, by using fructose fermentation medium as the control. Seventy-three differential protein spots were found and further identified by MALDI-MS. The difference of product of fructose-specific IIA/FPR component gene and mannitol-1-P dehydrogenase, may be involved in the difference of sorbitol transportation and dehydrogenation in the sorbitol fast- and slow-fermenting strains. The difference of the relative transcription levels of pyruvate formate-lyase to pyruvate dehydrogenase between the toxigenic and nontoxigenic strains may be also responsible for the time and ability difference of formate production between these strains. Conclusion Multiple factors involved in different metabolism steps may affect the sorbitol fermentation in the toxigenic and nontoxigenic strains of V. cholerae El Tor.</p

    Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time

    Get PDF
    BACKGROUND: Flowering time is a domestication trait of Glycine max and varies in soybeans, yet, a gene for flowering time variation has not been associated with soybean domestication. GIGANTEA (GI) is a major gene involved in the control of flowering time in Arabidopsis, although three GI homologs complicate this model in the soybean genome. RESULTS: In the present work, we revealed that the geographic evolution of the GIGANTEAa (GIa) haplotypes in G. max (GmGIa) and Glycine soja (GsGIa). Three GIa haplotypes (H1, H2, and H3) were found among cultivated soybeans and their wild relatives, yet an additional 44 diverse haplotypes were observed in wild soybeans. H1 had a premature stop codon in the 10(th) exon, whereas the other haplotypes encoded full-length GIa protein isoforms. In both wild-type and cultivated soybeans, H2 was present in the Southern region of China, and H3 was restricted to areas near the Northeast region of China. H1 was genetically derived from H2, and it was dominant and widely distributed among cultivated soybeans, whereas in wild populations, the ortholog of this domesticated haplotype H1 was only found in Yellow River basin with a low frequency. Moreover, this mutated GIa haplotype significantly correlated with early flowering. We further determined that the differences in gene expression of the three GmGIa haplotypes were not correlated to flowering time variations in cultivated soybeans. However, only the truncated GmGIa H1 could partially rescue gi-2 Arabidopsis from delayed flowering in transgenic plants, whereas both GmGIa H2 and H3 haplotypes could significantly repress flowering in transgenic Arabidopsis with a wild-type background. CONCLUSIONS: Thus, GmGIa haplotype diversification may have contributed to flowering time adaptation that facilitated the radiation of domesticated soybeans. In light of the evolution of the GIa gene, soybean domestication history for an early flowering phenotype is discussed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-016-0653-9) contains supplementary material, which is available to authorized users
    corecore