97 research outputs found

    Reorganization Impressionism : A Proposal for a New Methodology Using Machine Learning

    Get PDF
    The purpose of this study is to organize and consider artwork from a quantitative point of view. Therefore, the decision tree, which is a classification method of machine learning, is applied on 120 impressionist paintings from the Chicago Institute of Fine Arts. Through this classification, a different viewpoint from the past in interpreting the picture work has been obtained. Moreover, this new method may provide comprehensive interpretation of paintings with additional information such as the situation at the time of production, metadata, etc., instead of simply focusing on each painting.査読研究論文Refereed Paper

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Promotive effects of resistant maltodextrin on apparent absorption of calcium, magnesium, iron and zinc in rats

    Get PDF
    Background: It has been reported that low-viscous and fermentable dietary fiber and nondigestible oligosaccharides enhance mineral absorption. Resistant maltodextrin, nonviscous, fermentable and soluble source of dietary fiber, has several physiological functions. However, influence of resistant maltodextrin on mineral absorption is unclear. Aim of the study: We conducted balance studies in rats to investigate effects of resistant maltodextrin and hydrogenated resistant maltodextrin on apparent mineral absorption. Methods: In experiment 1 (Exp. 1), 40 rats were fed test diets based on AIN-93G with or without resistant maltodextrin or hydrogenated resistant maltodextrin for 2 weeks. In experiment 2 (Exp. 2), 32 rats were cecectomized (CX) or sham-operated (Sham) and fed diets with or without hydrogenated resistant maltodextrin for 1 week. Results: In Exp. 1, ingestion of resistant maltodextrin and hydrogenated resistant maltodextrin dose-dependently enhanced apparent absorption rates of Ca, Mg, Fe and Zn, and increased cecal fermentation with cecal expansion. In Exp. 2, the absorption rates of Ca and Mg were significantly enhanced by ingestion of hydrogenated resistant maltodextrin in Sham group but not in CX group. The promotion of Fe and Zn absorption was not affected by cecectomy. Conclusion: Ingestion of resistant maltodextrin and hydrogenated resistant maltodextrin increased apparent Ca and Mg absorptions dependent on cecal fermentation, while other mechanisms may also be involved in promotion of apparent Fe and Zn absorption by resistant maltodextrin

    Development and psychometric evaluation of the nurses' Work Values Scale

    No full text
    Abstract Aim This study aimed to develop the nurses' Work Values Scale (WVS) to determine how important certain values are for nurses and to psychometrically test the scale. Design Instrument development and validation study. Method A two‐phase scale development process comprising item generation, scale improvement and psychometric property evaluation was used. In the first phase, scale items were identified. In the second phase, item and exploratory factor analyses were performed in Study 1, and confirmatory factor analysis, validity verification and reliability verification of the nurses' WVS were performed in Study 2. Results As a result of the analysis, a scale of 30 items with four subdomains was developed. In convergent validity and reliability verification, it was shown that the nurses' WVS has acceptable validity and reliability. No Patient or Public Contribution Patients or members of the public were not involved in this study

    Two Arabidopsis cyclin A3s possess G1 cyclin-like features

    Get PDF
    A-type cyclins (CYCAs) are a type of mitotic cyclin and are closely related to cyclin B. Plant CYCAs are classified into three subtypes (CYCA1–CYCA3), among which CYCA3 has been suggested to show a biased expression during the G1-to-S phase. We characterised Arabidopsis CYCA3s (CYCA3;1–CYCA3;4) in terms of expression pattern and protein function. CYCA3;1 and CYCA3;2 transcripts were highly accumulated at the G1/S phase, whereas CYCA3;4 was constantly expressed during the cell cycle. Expressions of CYCA3;1 and CYCA3;2 were observed in actively dividing tissues, such as root and shoot apical meristems and lateral root primordia. Overexpression of CYCA3;1 or CYCA3;2 distorted apical dominance in Arabidopsis, indicating that they have critical functions in shoot meristems. In insect cells, CYCA3;1 formed an active kinase complex with CDKA;1, an orthologue of the yeast Cdc2/Cdc28p, and phosphorylated retinoblastoma-related protein, a key regulator in the transition from the G1 to the S phase. Our results suggest that Arabidopsis CYCA3;1 and CYCA3;2 are distinct members of the G1 cyclin family that play an important role in meristematic tissues
    corecore