17 research outputs found

    Effect of add-on proton pump inhibitors on parameters of glycemic control in type-2 diabetic patients

    Get PDF
    Proton pump inhibitors (PPIs) block the parietal cell H+/K+ ATPase, are superior at suppressing acid secretion & promoting peptic ulcer healing, wildly used clinically for the therapy of gastro-esophageal reflex disease, gastritis due to excess stomach acid, and gastric ulcers. After blocking the production of gastric acid, the proton-pump inhibitors indirectly elevate serum gastrin levels via a negative feedback effect. Evidences are reported that gastrin promotes β cell neogenesis in pancreatic ductal complex, modest pancreatic β cell replication and improvement of glucose tolerance in animal models. Some recent clinical studies have shown improved glucose tolerance in type-2 diabetes mellitus (T2DM). Although PPIs may be possible candidates for a new approach in the therapy of diabetes, a prospective, long-term, randomized, double-blind, placebo-controlled study is needed to establish the effect of PPIs on glycemic control in a large number of patients with T2DM

    Environmental pharmacology: an emerging science

    Get PDF
    With continuous rapid expansion of the human population there is escalating demand for resources, including human and veterinary pharmaceuticals. This has lead to rapid development of global pharmaceutical industry and with that increase in issues caused by pharmaceutical products. In recent years a great concern has been expressed over the occurrence and persistence of pharmaceutical products in the environment and their potential impact on environment. Owing to this the new branch of science called environmental pharmacology has sprouted. Environmental pharmacology deals with dispersion and impact of pharmaceutical products on environment. Solutions need to be suggested to save this only liveable planet from ill effects of these pharmaceutical products. This has given birth to the science of Ecopharmacovigilance (EPV)

    Efficacy and Tolerability of Intramuscular Dexketoprofen in Postoperative Pain Management following Hernia Repair Surgery

    Get PDF
    Objective. To evaluate the safety and efficacy of intramuscular dexketoprofen for postoperative pain in patients undergoing hernia surgery. Methodology. Total 202 patients received single intramuscular injection of dexketoprofen 50 mg or diclofenac 50 mg postoperatively. The pain intensity (PI) was self-evaluated by patients on VAS at baseline 1, 2, 4, 6, and 8 hours. The efficacy parameters were number of responders, difference in PI (PID) at 8 hours, sum of analogue of pain intensity differences (SAPID), and onset and duration of analgesia. Tolerability assessment was done by global evaluation and adverse events in each group. Results. Dexketoprofen showed superior efficacy in terms of number of responders (P = .007), PID at 8 hours (P = .02), and SAPID 0–8 hours (P < .0001). It also showed faster onset of action (42 minutes) and longer duration of action (6.5 hours). The adverse events were comparable in both groups. Conclusion. Single dose of dexketoprofen trometamol 50 mg given intramuscularly provided faster, better, and longer duration of analgesia in postoperative patients of hernia repair surgery than diclofenac 50 mg, with comparable safety

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Galectin-3 alters the lateral mobility and clustering of beta 1-integrin receptors

    Get PDF
    Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the alpha 5 beta 1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased beta 1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3-integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins

    Convection and extracellular matrix binding control interstitial transport of extracellular vesicles

    No full text
    Abstract Extracellular vesicles (EVs) influence a host of normal and pathophysiological processes in vivo. Compared to soluble mediators, EVs can traffic a wide range of proteins on their surface including extracellular matrix (ECM) binding proteins, and their large size (∼30‐150 nm) limits diffusion. We isolated EVs from the MCF10 series—a model human cell line of breast cancer progression—and demonstrated increasing presence of laminin‐binding integrins α3β1 and α6β1 on the EVs as the malignant potential of the MCF10 cells increased. Transport of the EVs within a microfluidic device under controlled physiological interstitial flow (0.15‐0.75 μm/s) demonstrated that convection was the dominant mechanism of transport. Binding of the EVs to the ECM enhanced the spatial concentration and gradient, which was mitigated by blocking integrins α3β1 and α6β1. Our studies demonstrate that convection and ECM binding are the dominant mechanisms controlling EV interstitial transport and should be leveraged in nanotherapeutic design
    corecore