145 research outputs found

    The Evolution of Density Structure of Starless and Protostellar Cores

    Full text link
    We present a near-infrared extinction study of nine dense cores at evolutionary stages between starless to Class I. Our results show that the density structure of all but one observed cores can be modeled with a single power law rho \propto r^p between ~ 0.2R-R of the cores. The starless cores in our sample show two different types of density structures, one follows p ~ -1.0 and the other follows p ~ -2.5, while the protostellar cores all have p ~ -2.5. The similarity between the prestellar cores with p ~ -2.5 and protostellar cores implies that those prestellar cores could be evolving towards the protostellar stage. The slope of p ~ -2.5 is steeper than that of an singular isothermal sphere, which may be interpreted with the evolutionary model of cores with finite mass.Comment: 19 pages, 3 figures, accepted for publication in the Astrophysical Journa

    Home versus clinic-based specimen collection for Chlamydia trachomatis and Neisseria gonorrhoeae

    Get PDF
    Abstract Sexually transmitted infections (STIs) are a major public health concern that must be addressed with innovative screening methods to supplement traditional approaches. Home-based screening with self-collected urine or vaginal specimens is a highly feasible and acceptable method, and shows promise in improving STI screening rates in both men and women. Home collection kits have been offered in a variety of settings, with results ranging from very modest improvements in screening rates to 100-fold increases beyond the rates observed with clinic-based screening. This article describes and evaluates the effectiveness and limitations of various home screening strategies used for the detection of STIs

    Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum

    Get PDF
    Following inoculation with the anthracnose pathogen Colletotrichum sublineolum, seedlings of the sorghum resistant cultivar SC748-5 showed more rapid and elevated accumulation of luteolin than the susceptible cultivar BTx623. On the other hand, apigenin was the major flavone detected in infected BTx623 seedlings. Luteolin was demonstrated to show stronger inhibition of spore germination of C. sublineolum than apigenin. Because of their pathogen-inducible and antifungal nature, both flavone aglycones are considered sorghum phytoalexins. The key enzyme responsible for flavone biosynthesis has not been characterized in monocots. A sorghum pathogen-inducible gene encoding a cytochrome P450 protein (CYP93G3) in the uncharacterized CYP93G subfamily was identified. Transgenic expression of the P450 gene in Arabidopsis demonstrated that the encoded protein is a functional flavone synthase (FNS) II in planta. The sorghum gene was then termed SbFNSII. It is a single-copy gene located on chromosome 2 and the first FNSII gene characterized in a monocot. Metabolite analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in precursor ion scan mode revealed the accumulation of 2-hydroxynaringenin and 2-hydroxyeriodictyol hexosides in the transgenic Arabidopsis plants. Hence, SbFNSII appears to share a similar catalytic mechanism with the licorice and Medicago truncatula FNSIIs (CYP93B subfamily) by converting flavanones to flavone through the formation of 2-hydroxyflavanones

    Identification of MOS9 as an interaction partner for chalcone synthase in the nucleus

    Get PDF
    Plant flavonoid metabolism has served as a platform for understanding a range of fundamental biological phenomena, including providing some of the early insights into the subcellular organization of metabolism. Evidence assembled over the past three decades points to the organization of the component enzymes as a membrane-associated complex centered on the entry-point enzyme, chalcone synthase (CHS), with flux into branch pathways controlled by competitive protein interactions. Flavonoid enzymes have also been found in the nucleus in a variety of plant species, raising the possibility of alternative, or moonlighting functions for these proteins in this compartment. Here, we present evidence that CHS interacts with MOS9, a nuclear-localized protein that has been linked to epigenetic control of R genes that mediate effector-triggered immunity. Overexpression of MOS9 results in a reduction of CHS transcript levels and a metabolite profile that substantially intersects with the effects of a null mutation in CHS. These results suggest that the MOS9–CHS interaction may point to a previously-unknown mechanism for controlling the expression of the highly dynamic flavonoid pathway

    Anion gap, anion gap corrected for albumin, base deficit and unmeasured anions in critically ill patients: implications on the assessment of metabolic acidosis and the diagnosis of hyperlactatemia

    Get PDF
    Abstract Background Base deficit (BD), anion gap (AG), and albumin corrected anion gap (ACAG) are used by clinicians to assess the presence or absence of hyperlactatemia (HL). We set out to determine if these tools can diagnose the presence of HL using cotemporaneous samples. Methods We conducted a chart review of ICU patients who had cotemporaneous arterial blood gas, serum chemistry, serum albumin (Alb) and lactate(Lac) levels measured from the same sample. We assessed the capacity of AG, BD, and ACAG to diagnose HL and severe hyperlactatemia (SHL). HL was defined as Lac > 2.5 mmol/L. SHL was defined as a Lac of > 4.0 mmol/L. Results From 143 patients we identified 497 series of lab values that met our study criteria. Mean age was 62.2 ± 15.7 years. Mean Lac was 2.11 ± 2.6 mmol/L, mean AG was 9.0 ± 5.1, mean ACAG was 14.1 ± 3.8, mean BD was 1.50 ± 5.4. The area under the curve for the ROC for BD, AG, and ACAG to diagnose HL were 0.79, 0.70, and 0.72, respectively. Conclusion AG and BD failed to reliably detect the presence of clinically significant hyperlactatemia. Under idealized conditions, ACAG has the capacity to rule out the presence of hyperlactatemia. Lac levels should be obtained routinely in all patients admitted to the ICU in whom the possibility of shock/hypoperfusion is being considered. If an AG assessment is required in the ICU, it must be corrected for albumin for there to be sufficient diagnostic utility.</p

    Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa)

    Get PDF
    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches

    The Creation and Physiological Relevance of Divergent Hydroxylation Patterns in the Flavonoid Pathway

    Get PDF
    Flavonoids and biochemically-related chalcones are important secondary metabolites, which are ubiquitously present in plants and therefore also in human food. They fulfill a broad range of physiological functions in planta and there are numerous reports about their physiological relevance for humans. Flavonoids have in common a basic C6-C3-C6 skeleton structure consisting of two aromatic rings (A and B) and a heterocyclic ring (C) containing one oxygen atom, whereas chalcones, as the intermediates in the formation of flavonoids, have not yet established the heterocyclic C-ring. Flavonoids are grouped into eight different classes, according to the oxidative status of the C-ring. The large number of divergent chalcones and flavonoid structures is from the extensive modification of the basic molecules. The hydroxylation pattern influences physiological properties such as light absorption and antioxidative activity, which is the base for many beneficial health effects of flavonoids. In some cases antiinfective properties are also effected

    Human PAPS Synthase Isoforms Are Dynamically Regulated Enzymes with Access to Nucleus and Cytoplasm

    Get PDF
    In higher eukaryotes, PAPS synthases are the only enzymes producing the essential sulphate-donor 3′-phospho-adenosine-5′-phosphosulphate (PAPS). Recently, PAPS synthases have been associated with several genetic diseases and retroviral infection. To improve our understanding of their pathobiological functions, we analysed the intracellular localisation of the two human PAPS synthases, PAPSS1 and PAPSS2. For both enzymes, we observed pronounced heterogeneity in their subcellular localisation. PAPSS1 was predominantly nuclear, whereas PAPSS2 localised mainly within the cytoplasm. Treatment with the nuclear export inhibitor leptomycin B had little effect on their localisation. However, a mutagenesis screen revealed an Arg-Arg motif at the kinase interface exhibiting export activity. Notably, both isoforms contain a conserved N-terminal basic Lys-Lys-Xaa-Lys motif indispensable for their nuclear localisation. This nuclear localisation signal was more efficient in PAPSS1 than in PAPSS2. The activities of the identified localisation signals were confirmed by microinjection studies. Collectively, we describe unusual localisation signals of both PAPS synthase isoforms, mobile enzymes capable of executing their function in the cytoplasm as well as in the nucleus

    MicroRNA Profiling of BRCA1/2 Mutation-Carrying and Non-Mutation-Carrying High-Grade Serous Carcinomas of Ovary

    Get PDF
    BACKGROUND:MicroRNAs (miRNA) are 20 approximately 25 nucleotide non-coding RNAs that inhibit the translation of targeted mRNA, and they have been implicated in the development of human malignancies. High grade serous ovarian carcinomas, the most common and lethal subtype of ovarian cancer, can occur sporadically or in the setting of BRCA1/2 syndromes. Little is known regarding the miRNA expression profiles of high grade serous carcinoma in relation to BRCA1/2 status, and compared to normal tubal epithelium, the putative tissue of origin for high grade serous carcinomas. METHODOLOGY/PRINCIPAL FINDINGS:Global miRNA expression profiling was performed on a series of 33 high grade serous carcinomas, characterized with respect to BRCA1/2 status (mutation, epigenetic silencing with loss of expression or normal), and with clinical follow-up, together with 2 low grade serous carcinomas, 2 serous borderline tumors, and 3 normal fallopian tube samples, using miRNA microarrays (328 human miRNA). Unsupervised hierarchical clustering based on miRNA expression profiles showed no clear separation between the groups of carcinomas with different BRCA1/2 status. There were relatively few miRNAs that were differentially expressed between the genotypic subgroups. Comparison of 33 high grade serous carcinomas to 3 normal fallopian tube samples identified several dysregulated miRNAs (false discovery rate <5%), including miR-422b and miR-34c. Quantitative RT-PCR analysis performed on selected miRNAs confirmed the pattern of differential expression shown by microarray analysis. Prognostically, lower level miR-422b and miR-34c in high grade serous carcinomas were both associated with decreased disease-specific survival by Kaplan-Meier analysis (p<0.05). CONCLUSIONS/SIGNIFICANCE:High grade serous ovarian carcinomas with and without BRCA1/2 abnormalities demonstrate very similar miRNA expression profiles. High grade serous carcinomas as a group exhibit significant miRNA dysregulation in comparison to tubal epithelium and the levels of miR-34c and miR-422b appear to be prognostically important
    corecore