1,021 research outputs found
Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group
The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants—liquid and gaseous petroleum compounds plus chemical dispersants—poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional "in-place, in-kind" restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, the authors provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future
Development of transdiagnostic clinical risk prediction models for 12-month onset and course of eating disorders among adolescents in the community
Objective: To develop and internally validate risk prediction models for adolescent onset and persistence of eating disorders. Methods: N = 963 Australian adolescents (11–19 years) in the EveryBODY Study cohort completed online surveys in 2018 and 2019. Models were built to predict 12-month risk of (1) onset, and (2) persistence of a DSM-5 eating disorder. Results: Onset Model. Of the n = 687 adolescents without an eating disorder at baseline, 16.9% were identified with an eating disorder after 12 months. The prediction model was based on evidence-based risk factors for eating disorder onset available within the dataset (sex, body mass index percentile, strict weight loss dieting, history of bullying, psychological distress, weight/shape concerns). This model showed fair discriminative performance (mean AUC =.75). The most important factors were psychological distress, weight and shape concerns, and female sex. Diagnostic Persistence Model. Of the n = 276 adolescents with an eating disorder at baseline, 74.6% were identified as continuing to meet criteria for an eating disorder after 12 months. The prediction model for diagnostic persistence was based on available evidence-based risk factors for eating disorder persistence (purging, distress, social impairment). This model showed poor discriminative performance (mean AUC =.65). The most important factors were psychological distress and self-induced vomiting for weight control. Discussion: We found preliminary evidence for the utility of a parsimonious model for 12-month onset of an eating disorder among adolescents in the community. Future research should include additional evidence-based risk factors and validate models beyond the original sample. Public Significance: This study demonstrated the feasibility of developing parsimonious and accurate models for the prediction of future onset of an eating disorder among adolescents. The most important predictors in this model included psychological distress and weight and shape concerns. This study has laid the ground work for future research to build and test more accurate prediction models in diverse samples, prior to translation into a clinical tool for use in real world settings to aid decisions about referral to early intervention
A Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group
The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants — liquid and gaseous petroleum compounds plus chemical dispersants — poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals.
As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy.
Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional “in-place, in-kind” restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must:
1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill;
2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable;
3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and
4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning.
With these principles in mind, we provide the scientific basis for a sustainable restoration program along three themes:
1. Assess and repair damage from DWH and other stresses on the Gulf;
2. Protect existing habitats and populations; and
3. Integrate sustainable human use with ecological processes in the Gulf of Mexico.
Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future
Changes in Floquet state structure at avoided crossings: delocalization and harmonic generation
Avoided crossings are common in the quasienergy spectra of strongly driven
nonlinear quantum wells. In this paper we examine the sinusoidally driven
particle in a square potential well to show that avoided crossings can alter
the structure of Floquet states in this system. Two types of avoided crossings
are identified: on type leads only to temporary changes (as a function of
driving field strength) in Floquet state structure while the second type can
lead to permanent delocalization of the Floquet states. Radiation spectra from
these latter states show significant increase in high harmonic generation as
the system passes through the avoided crossing.Comment: 8 pages with 10 figures submitted to Physical Review
Recommended from our members
High Temperature and High Resolution UV Photoelectron Spectroscopy Using Supersonic Molecular Beams
A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeI{alpha} (584{angstrom}) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As{sub 2}, As{sub 4}, and ZnCl{sub 2} are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab
Gain without population inversion in V-type systems driven by a frequency-modulated field
We obtain gain of the probe field at multiple frequencies in a closed
three-level V-type system using frequency modulated pump field. There is no
associated population inversion among the atomic states of the probe
transition. We describe both the steady-state and transient dynamics of this
system. Under suitable conditions, the system exhibits large gain
simultaneously at series of frequencies far removed from resonance. Moreover,
the system can be tailored to exhibit multiple frequency regimes where the
probe experiences anomalous dispersion accompanied by negligible
gain-absorption over a large bandwidth, a desirable feature for obtaining
superluminal propagation of pulses with negligible distortion.Comment: 10 pages + 8 figures; To appear in Physical Review
Floquet scattering theory of quantum pumps
We develop the Floquet scattering theory for quantum mechanical pumping in
mesoscopic conductors. The nonequilibrium distribution function, the dc charge
and heat currents are investigated at arbitrary pumping amplitude and
frequency. For mesoscopic samples with discrete spectrum we predict a sign
reversal of the pumped current when the pump frequency is equal to the level
spacing in the sample. This effect allows to measure the phase of the
transmission coefficient through the mesoscopic sample. We discuss the
necessary symmetry conditions (both spatial and temporal) for pumping.Comment: 11 pages, 5 figure
Non-perturbative electron dynamics in crossed fields
Intense AC electric fields on semiconductor structures have been studied in
photon-assisted tunneling experiments with magnetic field applied either
parallel (B_par) or perpendicular (B_per) to the interfaces. We examine here
the electron dynamics in a double quantum well when intense AC electric fields
F, and tilted magnetic fields are applied simultaneously. The problem is
treated non-perturbatively by a time-dependent Hamiltonian in the effective
mass approximation, and using a Floquet-Fourier formalism. For B_par=0, the
quasi-energy spectra show two types of crossings: those related to different
Landau levels, and those associated to dynamic localization (DL), where the
electron is confined to one of the wells, despite the non-negligible tunneling
between wells. B_par couples parallel and in-plane motions producing
anti-crossings in the spectrum. However, since our approach is
non-perturbative, we are able to explore the entire frequency range. For high
frequencies, we reproduce the well known results of perfect DL given by zeroes
of a Bessel function. We find also that the system exhibits DL at the same
values of the field F, even as B_par non-zero, suggesting a hidden dynamical
symmetry in the system which we identify with different parity operations. The
return times for the electron at various values of field exhibit interesting
and complex behavior which is also studied in detail. We find that smaller
frequencies shifts the DL points to lower field F, and more importantly, yields
poorer localization by the field. We analyze the explicit time evolution of the
system, monitoring the elapsed time to return to a given well for each Landau
level, and find non-monotonic behavior for decreasing frequencies.Comment: REVTEX4 + 11 eps figs, submitted to Phys. Rev.
Physical structure of the envelopes of intermediate-mass protostars
Context: Intermediate mass protostars provide a bridge between low- and
high-mass protostars. Furthermore, they are an important component of the UV
interstellar radiation field. Despite their relevance, little is known about
their formation process. Aims: We present a systematic study of the physical
structure of five intermediate mass, candidate Class 0 protostars. Our two
goals are to shed light on the first phase of intermediate mass star formation
and to compare these protostars with low- and high-mass sources. Methods: We
derived the dust and gas temperature and density profiles of the sample. We
analysed all existing continuum data on each source and modelled the resulting
SED with the 1D radiative transfer code DUSTY. The gas temperature was then
predicted by means of a modified version of the code CHT96. Results: We found
that the density profiles of five out of six studied intermediate mass
envelopes are consistent with the predictions of the "inside-out" collapse
theory.We compared several physical parameters, like the power law index of the
density profile, the size, the mass, the average density, the density at 1000
AU and the density at 10 K of the envelopes of low-, intermediate, and
high-mass protostars. When considering these various physical parameters, the
transition between the three groups appears smooth, suggesting that the
formation processes and triggers do not substantially differ
Design and Bolometer Characterization of the SPT-3G First-year Focal Plane
During the austral summer of 2016-17, the third-generation camera, SPT-3G,
was installed on the South Pole Telescope, increasing the detector count in the
focal plane by an order of magnitude relative to the previous generation.
Designed to map the polarization of the cosmic microwave background, SPT-3G
contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and
dual-polarization pixels, read out using 68x frequency-domain multiplexing.
Here we discuss design, assembly, and layout of the modules, as well as early
performance characterization of the first-year array, including yield and
detector properties.Comment: Conference proceeding for Low Temperature Detectors 2017. Accepted
for publication: 27 August 201
- …