73 research outputs found

    Microtubule dynamics in cell division : exploring living cells with polarized light microscopy

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Cell and Developmental Biology 24 (2008): 1-28, doi:10.1146/annurev.cellbio.24.110707.175323.This Perspective is an account of my early experience while I studied the dynamic organization and behavior of the mitotic spindle and its submicroscopic filaments using polarized light microscopy. The birefringence of spindle filaments in normally dividing plant and animal cells, and those treated by various agents, revealed: A) the reality of spindle fibers and fibrils in healthy living cells; B) the labile, dynamic nature of the molecular filaments making up the spindle fibers; C) the mode of fibrogenesis and action of orienting centers; and D) force-generating properties based on the disassembly and assembly of the fibrils. These studies, which were carried out directly on living cells using improved polarizing microscopes, in fact, predicted the reversible assembly properties of isolated microtubules

    A Novel Enzymatic System against Oxidative Stress in the Thermophilic Hydrogen-Oxidizing Bacterium Hydrogenobacter thermophilus

    Get PDF
    Rubrerythrin (Rbr) is a non-heme iron protein composed of two distinctive domains and functions as a peroxidase in anaerobic organisms. A novel Rbr-like protein, ferriperoxin (Fpx), was identified in Hydrogenobacter thermophilus and was found not to possess the rubredoxin-like domain that is present in typical Rbrs. Although this protein is widely distributed among aerobic organisms, its function remains unknown. In this study, Fpx exhibited ferredoxin:NADPH oxidoreductase (FNR)-dependent peroxidase activity and reduced both hydrogen peroxide (H2O2) and organic hydroperoxide in the presence of NADPH and FNR as electron donors. The calculated Km and Vmax values of Fpx for organic hydroperoxides were comparable to that for H2O2, demonstrating a multiple reactivity of Fpx towards hydroperoxides. An fpx gene disruptant was unable to grow under aerobic conditions, whereas its growth profiles were comparable to those of the wild-type strain under anaerobic and microaerobic conditions, clearly indicating the indispensability of Fpx as an antioxidant of H. thermophilus in aerobic environments. Structural analysis suggested that domain-swapping occurs in Fpx, and this domain-swapped structure is well conserved among thermophiles, implying the importance of structural stability of domain-swapped conformation for thermal environments. In addition, Fpx was located on a deep branch of the phylogenetic tree of Rbr and Rbr-like proteins. This finding, taken together with the wide distribution of Fpx among Bacteria and Archaea, suggests that Fpx is an ancestral type of Rbr homolog that functions as an essential antioxidant and may be part of an ancestral peroxide-detoxification system

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Understanding Influenza

    Get PDF
    Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This article therefore briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader’s own research will help us to understand it better
    corecore