616 research outputs found
Multi-wavelength spectroscopic observation of EUV jet in AR 10960
We have studied the relationship between the velocity and temperature of a
solar EUV jet. The highly accelerated jet occurred in the active region NOAA
10960 on 2007 June 5. Multi-wavelength spectral observations with EIS/Hinode
allow us to investigate Doppler velocities at the wide temperature range. We
analyzed the three-dimensional angle of the jet from the stereoscopic analysis
with STEREO. Using this angle and Doppler velocity, we derived the true
velocity of the jet. As a result, we found that the cool jet observed with
\ion{He}{2} 256 \AA is accelerated to around which is over the upper limit of the chromospheric evaporation. The
velocities observed with the other lines are under the upper limit of the
chromospheric evaporation while most of the velocities of hot lines are higher
than that of cool lines. We interpret that the chromospheric evaporation and
magnetic acceleration occur simultaneously. A morphological interpretation of
this event based on the reconnection model is given by utilizing the
multi-instrumental observations.Comment: Accepted for publication in Ap
Jets in coronal holes: Hinode observations and 3D computer modelling
Recent observations of coronal hole areas with the XRT and EIS instruments
onboard the Hinode satellite have shown with unprecedented detail the launching
of fast, hot jets away from the solar surface. In some cases these events
coincide with episodes of flux emergence from beneath the photosphere. In this
letter we show results of a 3D numerical experiment of flux emergence from the
solar interior into a coronal hole and compare them with simultaneous XRT and
EIS observations of a jet-launching event that accompanied the appearance of a
bipolar region in MDI magnetograms. The magnetic skeleton and topology that
result in the experiment bear a strong resemblance to linear force-fee
extrapolations of the SOHO/MDI magnetograms. A thin current sheet is formed at
the boundary of the emerging plasma. A jet is launched upward along the open
reconnected field lines with values of temperature, density and velocity in
agreement with the XRT and EIS observations. Below the jet, a split-vault
structure results with two chambers: a shrinking one containing the emerged
field loops and a growing one with loops produced by the reconnection. The
ongoing reconnection leads to a horizontal drift of the vault-and-jet
structure. The timescales, velocities, and other plasma properties in the
experiment are consistent with recent statistical studies of this type of
events made with Hinode data.Comment: 10 pages, 4 figures. Revised version submitted to ApJ Letter
Automatic detection of limb prominences in 304 A EUV images
A new algorithm for automatic detection of prominences on the solar limb in 304 A EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a
classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as starting point to reconstruct the whole prominence by morphological image processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community
Micro-Sigmoids as Progenitors of Coronal Jets - Is Eruptive Activity Self-Similarly Multi-Scaled?
Observations from the X-ray telescope (XRT) on Hinode are used to study the
nature of X-ray bright points, sources of coronal jets. Several jet events in
the coronal holes are found to erupt from small-scale, S-shaped bright regions.
This finding suggests that coronal micro-sigmoids may well be progenitors of
coronal jets. Moreover, the presence of these structures may explain numerous
observed characteristics of jets such as helical structures, apparent
transverse motions, and shapes. In analogy to large-scale sigmoids giving rise
to coronal mass ejections (CMEs), a promising future task would perhaps be to
investigate whether solar eruptive activity, from coronal jets to CMEs, is
self-similar in terms of properties and instability mechanisms.Comment: 8 pages, 5 figures, 1 tabl
Polar Field Reversal Observations with Hinode
We have been monitoring yearly variation in the Sun's polar magnetic fields
with the Solar Optical Telescope aboard {\it Hinode} to record their evolution
and expected reversal near the solar maximum. All magnetic patches in the
magnetic flux maps are automatically identified to obtain the number density
and magnetic flux density as a function of th total magnetic flux per patch.
The detected magnetic flux per patch ranges over four orders of magnitude
( -- Mx). The higher end of the magnetic flux in the polar
regions is about one order of magnitude larger than that of the quiet Sun, and
nearly that of pores. Almost all large patches ( Mx) have the
same polarity, while smaller patches have a fair balance of both polarities.
The polarity of the polar region as a whole is consequently determined only by
the large magnetic concentrations. A clear decrease in the net flux of the
polar region is detected in the slow rising phase of the current solar cycle.
The decrease is more rapid in the north polar region than in the south. The
decrease in the net flux is caused by a decrease in the number and size of the
large flux concentrations as well as the appearance of patches with opposite
polarity at lower latitudes. In contrast, we do not see temporal change in the
magnetic flux associated with the smaller patches ( Mx) and that of
the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap
Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study
The static and dynamic structure of liquid Al is studied using the orbital
free ab-initio molecular dynamics method. Two thermodynamic states along the
coexistence line are considered, namely T = 943 K and 1323 K for which X-ray
and neutron scattering data are available. A new kinetic energy functional,
which fulfills a number of physically relevant conditions is employed, along
with a local first principles pseudopotential. In addition to a comparison with
experiment, we also compare our ab-initio results with those obtained from
conventional molecular dynamics simulations using effective interionic pair
potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR
Transduction of the Geomagnetic Field as Evidenced from Alpha-band Activity in the Human Brain
Magnetoreception, the perception of the geomagnetic field, is a sensory modality well-established across all major groups of vertebrates and some invertebrates, but its presence in humans has been tested rarely, yielding inconclusive results. We report here a strong, specific human brain response to ecologically-relevant rotations of Earth-strength magnetic fields. Following geomagnetic stimulation, a drop in amplitude of EEG alpha oscillations (8-13 Hz) occurred in a repeatable manner. Termed alpha event-related desynchronization (alpha-ERD), such a response has been associated previously with sensory and cognitive processing of external stimuli including vision, auditory and somatosensory cues. Alpha-ERD in response to the geomagnetic field was triggered only by horizontal rotations when the static vertical magnetic field was directed downwards, as it is in the Northern Hemisphere; no brain responses were elicited by the same horizontal rotations when the static vertical component was directed upwards. This implicates a biological response tuned to the ecology of the local human population, rather than a generic physical effect.
Biophysical tests showed that the neural response was sensitive to static components of the magnetic field. This rules out all forms of electrical induction (including artifacts from the electrodes) which are determined solely on dynamic components of the field. The neural response was also sensitive to the polarity of the magnetic field. This rules out free-radical 'quantum compass' mechanisms like the cryptochrome hypothesis, which can detect only axial alignment. Ferromagnetism remains a viable biophysical mechanism for sensory transduction and provides a basis to start the behavioral exploration of human magnetoreception
Observing the Sun with Atacama Large Millimeter/submillimeter Array (ALMA): High Resolution Interferometric Imaging
Observations of the Sun at millimeter and submillimeter wavelengths offer a
unique probe into the structure, dynamics, and heating of the chromosphere; the
structure of sunspots; the formation and eruption of prominences and filaments;
and energetic phenomena such as jets and flares. High-resolution observations
of the Sun at millimeter and submillimeter wavelengths are challenging due to
the intense, extended, low- contrast, and dynamic nature of emission from the
quiet Sun, and the extremely intense and variable nature of emissions
associated with energetic phenomena. The Atacama Large Millimeter/submillimeter
Array (ALMA) was designed with solar observations in mind. The requirements for
solar observations are significantly different from observations of sidereal
sources and special measures are necessary to successfully carry out this type
of observations. We describe the commissioning efforts that enable the use of
two frequency bands, the 3 mm band (Band 3) and the 1.25 mm band (Band 6), for
continuum interferometric-imaging observations of the Sun with ALMA. Examples
of high-resolution synthesized images obtained using the newly commissioned
modes during the solar commissioning campaign held in December 2015 are
presented. Although only 30 of the eventual 66 ALMA antennas were used for the
campaign, the solar images synthesized from the ALMA commissioning data reveal
new features of the solar atmosphere that demonstrate the potential power of
ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning
efforts will continue to enable new and unique solar observing capabilities.Comment: 22 pages, 12 figures, accepted for publication in Solar Physic
- …