We have studied the relationship between the velocity and temperature of a
solar EUV jet. The highly accelerated jet occurred in the active region NOAA
10960 on 2007 June 5. Multi-wavelength spectral observations with EIS/Hinode
allow us to investigate Doppler velocities at the wide temperature range. We
analyzed the three-dimensional angle of the jet from the stereoscopic analysis
with STEREO. Using this angle and Doppler velocity, we derived the true
velocity of the jet. As a result, we found that the cool jet observed with
\ion{He}{2} 256 \AA log10Te[K]=4.9 is accelerated to around 220km/s which is over the upper limit of the chromospheric evaporation. The
velocities observed with the other lines are under the upper limit of the
chromospheric evaporation while most of the velocities of hot lines are higher
than that of cool lines. We interpret that the chromospheric evaporation and
magnetic acceleration occur simultaneously. A morphological interpretation of
this event based on the reconnection model is given by utilizing the
multi-instrumental observations.Comment: Accepted for publication in Ap