20 research outputs found

    Production of sweet wheat

    Get PDF

    Chitosan Nanoparticles Act as an Adjuvant to Promote both Th1 and Th2 Immune Responses Induced by Ovalbumin in Mice

    Get PDF
    The study was conducted to investigate the promoted immune response to ovalbumin in mice by chitosan nanoparticles (CNP) and its toxicity. CNP did not cause any mortality or side effects when mice were administered subcutaneously twice with a dose of 1.5 mg at 7-day intervals. Institute of Cancer Research (ICR) mice were immunized subcutaneously with 25 μg ovalbumin (OVA) alone or with 25 μg OVA dissolved in saline containing Quil A (10 μg), chitosan (CS) (50 μg) or CNP (12.5, 50 or 200 μg) on days 1 and 15. Two weeks after the secondary immunization, serum OVA-specific antibody titers, splenocyte proliferation, natural killer (NK) cell activity, and production and mRNA expression of cytokines from splenocytes were measured. The serum OVA-specific IgG, IgG1, IgG2a, and IgG2b antibody titers and Con A-, LPS-, and OVA-induced splenocyte proliferation were significantly enhanced by CNP (P < 0.05) as compared with OVA and CS groups. CNP also significantly promoted the production of Th1 (IL-2 and IFN-γ) and Th2 (IL-10) cytokines and up-regulated the mRNA expression of IL-2, IFN-γ and IL-10 cytokines in splenocytes from the immunized mice compared with OVA and CS groups. Besides, CNP remarkably increased the killing activities of NK cells activity (P < 0.05). The results suggested that CNP had a strong potential to increase both cellular and humoral immune responses and elicited a balanced Th1/Th2 response, and that CNP may be a safe and efficacious adjuvant candidate suitable for a wide spectrum of prophylactic and therapeutic vaccines

    Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In allopolypoid crops, homoeologous genes in different genomes exhibit a very high sequence similarity, especially in the coding regions of genes. This makes it difficult to design genome-specific primers to amplify individual genes from different genomes. Development of genome-specific primers for agronomically important genes in allopolypoid crops is very important and useful not only for the study of sequence diversity and association mapping of genes in natural populations, but also for the development of gene-based functional markers for marker-assisted breeding. Here we report on a useful approach for the development of genome-specific primers in allohexaploid wheat.</p> <p>Findings</p> <p>In the present study, three genome-specific primer sets for the <it>waxy </it>(<it>Wx</it>) genes and four genome-specific primer sets for the <it>starch synthase II </it>(<it>SSII</it>) genes were developed mainly from single nucleotide polymorphisms (SNPs) and/or insertions or deletions (Indels) in introns and intron-exon junctions. The size of a single PCR product ranged from 750 bp to 1657 bp. The total length of amplified PCR products by these genome-specific primer sets accounted for 72.6%-87.0% of the <it>Wx </it>genes and 59.5%-61.6% of the <it>SSII </it>genes. Five genome-specific primer sets for the <it>Wx </it>genes (one for Wx-7A, three for Wx-4A and one for Wx-7D) could distinguish the wild type wheat and partial waxy wheat lines. These genome-specific primer sets for the <it>Wx </it>and <it>SSII </it>genes produced amplifications in hexaploid wheat, cultivated durum wheat, and <it>Aegilops tauschii </it>accessions, but failed to generate amplification in the majority of wild diploid and tetraploid accessions.</p> <p>Conclusions</p> <p>For the first time, we report on the development of genome-specific primers from three homoeologous <it>Wx </it>and <it>SSII </it>genes covering the majority of the genes in allohexaploid wheat. These genome-specific primers are being used for the study of sequence diversity and association mapping of the three homoeologous <it>Wx </it>and <it>SSII </it>genes in natural populations of both hexaploid wheat and cultivated tetraploid wheat. The strategies used in this paper can be used to develop genome-specific primers for homoeologous genes in any allopolypoid species. They may be also suitable for (i) the development of gene-specific primers for duplicated paralogous genes in any diploid species, and (ii) the development of allele-specific primers at the same gene locus.</p

    Using the Hexaploid Nature of Wheat To Create Variability in Starch Characteristics

    No full text
    In hexaploid crops, such as bread wheat, it should be possible to fine-tune phenotypic traits by identifying wild-type and null genes from each of the three genomes and combining them in a calculated manner. Here, we demonstrate this with gene combinations for two starch synthesis genes, <i>SSIIa</i> and <i>GBSSI</i>. Lines with inactive copies of both enzymes show a very dramatic change in phenotype, so to create intermediate phenotypes, we used marker-assisted selection to develop near-isogenic lines (NILs) carrying homozygous combinations of null alleles. For both genes, gene dosage effects follow the order B > D ≥ A; therefore, we completed detailed analysis of starch characteristics for NIL 3-3, which is null for the B-genome copy of the <i>SSIIa</i> and <i>GBSSI</i> genes, and NIL 5-5, which has null mutations in the B- and D-genome-encoded copies of both of these genes. The effects of the combinations on phenotypic traits followed the order expected on the basis of genotype, with NIL 5-5 showing the largest differences from the wild type, while NIL 3-3 characteristics were intermediate between NIL 5-5 and the wild type. Differences among genotypes were significant for many starch characteristics, including percent amylose, chain length distribution, gelatinization temperature, retrogradation, and pasting properties, and these differences appeared to translate into improvements in end-product quality, since bread made from type 5-5 flour showed a 3 day lag in staling
    corecore