8 research outputs found

    Impact of enterovirus and other enteric pathogens on oral polio and rotavirus vaccine performance in Bangladeshi infants

    Get PDF
    AbstractBackgroundOral polio vaccine (OPV) and rotavirus vaccine (RV) exhibit poorer performance in low-income settings compared to high-income settings. Prior studies have suggested an inhibitory effect of concurrent non-polio enterovirus (NPEV) infection, but the impact of other enteric infections has not been comprehensively evaluated.MethodsIn urban Bangladesh, we tested stools for a broad range of enteric viruses, bacteria, parasites, and fungi by quantitative PCR from infants at weeks 6 and 10 of life, coincident with the first OPV and RV administration respectively, and examined the association between enteropathogen quantity and subsequent OPV serum neutralizing titers, serum rotavirus IgA, and rotavirus diarrhea.ResultsCampylobacter and enterovirus (EV) quantity at the time of administration of the first dose of OPV was associated with lower OPV1-2 serum neutralizing titers, while enterovirus quantity was also associated with diminished rotavirus IgA (−0.08 change in log titer per tenfold increase in quantity; P=0.037), failure to seroconvert (OR 0.78, 95% CI: 0.64–0.96; P=0.022), and breakthrough rotavirus diarrhea (OR 1.34, 95% CI: 1.05–1.71; P=0.020) after adjusting for potential confounders. These associations were not observed for Sabin strain poliovirus quantity.ConclusionIn this broad survey of enteropathogens and oral vaccine performance we find a particular association between EV carriage, particularly NPEV, and OPV immunogenicity and RV protection. Strategies to reduce EV infections may improve oral vaccine responses.ClinicalTrials.gov Identifier: NCT01375647

    High Throughput Multiplex PCR and Probe-based Detection with Luminex Beads for Seven Intestinal Parasites

    No full text
    Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites—Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis—were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites

    Simultaneous Detection of Six Diarrhea-Causing Bacterial Pathogens with an In-House PCR-Luminex Assay

    Get PDF
    Diarrhea can be caused by a range of pathogens, including several bacteria. Conventional diagnostic methods, such as culture, biochemical tests, and enzyme-linked immunosorbent assay (ELISA), are laborious. We developed a 7-plex PCR-Luminex assay to simultaneously screen for several of the major diarrhea-causing bacteria directly in fecal specimens, including pathogenic Aeromonas, Campylobacter jejuni, Campylobacter coli, Salmonella, Shigella, enteroinvasive Escherichia coli (EIEC), Vibrio, and Yersinia. We included an extrinsic control to verify extraction and amplification. The assay was first validated with reference strains or isolates and exhibited a limit of detection of 103 to 105 CFU/g of stool for each pathogen as well as quantitative detection up to 109 CFU/g. A total of 205 clinical fecal specimens from individuals with diarrhea, previously cultured for enteric pathogens and tested for Campylobacter by ELISA, were evaluated. Using these predicate methods as standards, sensitivities and specificities of the PCR-Luminex assay were 89% and 94% for Aeromonas, 89% and 93% for Campylobacter, 96% and 95% for Salmonella, 94% and 94% for Shigella, 92% and 97% for Vibrio, and 100% and 100% for Yersinia, respectively. All discrepant results were further examined by singleplex real-time PCR assays targeting different gene regions, which revealed 89% (55/62 results) concordance with the PCR-Luminex assay. The fluorescent signals obtained with this approach exhibited a statistically significant correlation with the cycle threshold (CT) values from the cognate real-time PCR assays (P < 0.05). This multiplex PCR-Luminex assay enables sensitive, specific, and quantitative detection of the major bacterial causes of gastroenteritis
    corecore